首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titin is a large intrasarcomeric protein that, among its many roles in muscle, is thought to modulate the in vivo assembly of the myosin motor filament. This is achieved through the molecular template properties of its A-band region, which is composed of fibronectin type III (FnIII) and immunoglobulin (Ig) domains organized into characteristic 7-domain (D-zone) and 11-domain (C-zone) superrepeats. Currently, there is little knowledge on the structural details of this region of titin. Here we report the conformational characterization of three FnIII tandems, A77-A78, A80-A82, and A84-A86, which are components of the representative fourth C-zone superrepeat. The structure of A77-A78 has been elucidated by X-ray crystallography to 1.65 Å resolution, while low-resolution models of A80-A82 and A84-A86 have been calculated using small-angle X-ray scattering. A77-A78 adopts an extended “up-down” domain arrangement, where domains are connected by a hydrophilic three-residue linker sequence. The linker is embedded in a rich network of polar contacts at the domain interface that results in a stiff molecular conformation. The models of A80-A82 and A84-A86, which contain hydrophobic six-residue-long interdomain linkers, equally showed elongated molecular shapes, but with slightly coiled or zigzagged conformations. Small-angle X-ray scattering data further suggested that the long linkers do not result in a noticeable increase in molecular flexibility but lead to semibent domain arrangements. Our findings indicate that the structural characteristics of FnIII tandems from A-band titin contrast markedly with those of poly-Ig tandems from the elastic I-band, which exhibit domain interfaces depleted of interactions and compliant conformations. Furthermore, the analysis of sequence conservation in FnIII domains from A-band titin points to the existence of conformationally defined interfaces at specific superrepeat positions, possibly leading to a periodic and locally ordered architecture supporting the molecular scaffold properties of this region of titin.  相似文献   

2.
3.
A model of rabbit muscle phosphoglucomutase was refined at 2.7-A resolution by using two heavy atom derivatives for initial phasing and standard refinement procedures, including molecular replacement averaging about a 2-fold axis and dynamic simulation: final R-factor, 0.223 (no solvent modeling); RMS deviation from standard bond lengths and angles, 0.020 A and 3.6 degrees, respectively (all 8658 nonhydrogen atoms plus 36,953 reflections (F/sigma greater than or equal to 3) between 8- and 2.7-A resolutions); average of individually refined atomic B-factors, 40 A2 (all atoms) and 30 A2 (all atoms in domains I-III). An H-bonding scheme with 538 main chain H-bonds for the two monomers in the asymmetric unit and probable ligands for six uranyl ions in one heavy atom derivative is given. The monomer contains 42 strands/helices arranged into four alpha/beta-domains. Each of the first three domains contains an alpha 3 beta 4 alpha 1 motif, where the topology of beta 4 is 2,1,3,4:[arrows: see text] which is a topology not encountered in an extensive search among known protein structures. A spatial similarity is observed between corresponding residues in the three repetitions of this motif per monomer, but the minimal mutational distance between spatially corresponding residues is not statistically significant. The loop between the antiparallel strands in each of these domains is an important feature of the active site. In domain IV, beta-sheet topology is 2,1,3,4,5,6:[arrows:see text]. Noncovalent domain/domain interactions within the monomer are greatest between adjacent domains along the polypeptide chain, which are not substantially interdigitated and can be cleanly disengaged by altering the phi/psi torsional angles of three uniquely positioned residues in the model. The observed hierarchy of noncovalent interactions between structural units within the crystal, based on a semi-empirical paradigm, suggests that monomer-monomer contacts within the asymmetric unit are formed during growth of the lattice and provides a rationale for some of the diffraction characteristics of phosphoglucomutase crystals. An unusually deep crevice involving 58 residues is formed by the head-to-tail, twisted semicircular arrangement of the four domains of the monomer that places no atom more than 12 A from the water-accessible surface. The active site of the enzyme is extensively buried at the bottom of this crevice, at the approximate confluence of the four domains. Other features of the active site, including the surrounding helical dipoles, and the metal-ion binding pocket are described, together with structure/function comparisons with a number of other enzymes.  相似文献   

4.
p-Cresol methylhydroxylase (PCMH) isolated from Pseudomonas putida is an alpha 2 beta 2 tetramer of approximate subunit Mr 49,000 and 9,000. It is a flavocytochrome c containing covalently bound FAD in the larger subunit and covalently bound heme in the smaller. Crystals in space group P2(1)2(1)2(1) with unit-cell parameters a = 140.3 A, b = 130.6 A, and c = 74.1 A contain one full molecule per asymmetric unit and diffract anisotropically to about 2.8-A resolution in two directions and to about 3.3-A resolution in the third. An electron density map has been computed at a nominal resolution of 3.0 A by use of area detector data from native crystals and from two derivatives. The phases were improved with the B.C. Wang solvent leveling procedure, and the map was averaged about the noncrystallographic 2-fold axis. The cytochrome subunit, whose amino acid sequence is known, has been fitted to the electron density on a graphics system. The course of the polypeptide chain of the flavoprotein subunit, whose sequence is mostly unknown, has been traced in a minimap and a model of polyalanine fitted to the electron density on the graphics system. The flavoprotein subunit consists of three domains in close contact. The N-terminal domain consists largely of beta-structure and contains most of the FAD binding site. The second domain contains a seven-stranded antiparallel beta-sheet of unusual topology connected by antiparallel alpha-helices on one side. The flavin ring lies at the juncture of the first two domains. The third domain lies against the first domain and helps cover the rest of the FAD chain. The cytochrome subunit resembles other small cytochromes such as c-551 and c5 and fits into a depression on the surface of the large flavoprotein subunit. The flavin and heme planes are nearly perpendicular, the normals to the planes being approximately 65 degrees apart. The two groups are separated by about 8 A, the distance from one of the vinyl methylene carbon atoms of the heme to the 8 alpha-methyl group of the flavin ring.  相似文献   

5.
Structures of nine independent conformers of E. coli 5'-nucleotidase (5'-NT) have been analyzed using four different crystal forms. These data show that the two-domain protein undergoes an unusual 96 degrees hinge-bending domain rotation. Structures of the open and closed forms with substrates and inhibitors reveal that the substrate moves by approximately 25 A with the large domain rotation into the catalytic site. The domain motions derived from a comparison of the nine conformations agree well with motions obtained from a normal mode analysis in that all independent domain rotations are around axes that are roughly located in the plane which includes the domain centers and the hinge. Two residues, Lys355 and Gly356, form the core of the hinge region and undergo a large change of the main-chain torsion angles. The hinge-bending movement observed for 5'-nucleotidase differs markedly from a classical hinge-bending closure motion which involves an opening of the substrate or ligand-binding cleft between two domains. In contrast, the movement observed in 5'-nucleotidase resembles that of a ball-and-socket joint. The smaller C-terminal domain rotates approximately around its center such that the residues at the domain interface move in a sliding motion along the interface. Few direct interdomain contacts and a layer of water molecules between the two domains facilitate the sliding motion.  相似文献   

6.
Refined structure of dimeric diphtheria toxin at 2.0 A resolution.   总被引:5,自引:4,他引:1       下载免费PDF全文
The refined structure of dimeric diphtheria toxin (DT) at 2.0 A resolution, based on 37,727 unique reflections (F > 1 sigma (F)), yields a final R factor of 19.5% with a model obeying standard geometry. The refined model consists of 523 amino acid residues, 1 molecule of the bound dinucleotide inhibitor adenylyl 3'-5' uridine 3' monophosphate (ApUp), and 405 well-ordered water molecules. The 2.0-A refined model reveals that the binding motif for ApUp includes residues in the catalytic and receptor-binding domains and is different from the Rossmann dinucleotide-binding fold. ApUp is bound in part by a long loop (residues 34-52) that crosses the active site. Several residues in the active site were previously identified as NAD-binding residues. Glu 148, previously identified as playing a catalytic role in ADP-ribosylation of elongation factor 2 by DT, is about 5 A from uracil in ApUp. The trigger for insertion of the transmembrane domain of DT into the endosomal membrane at low pH may involve 3 intradomain and 4 interdomain salt bridges that will be weakened at low pH by protonation of their acidic residues. The refined model also reveals that each molecule in dimeric DT has an "open" structure unlike most globular proteins, which we call an open monomer. Two open monomers interact by "domain swapping" to form a compact, globular dimeric DT structure. The possibility that the open monomer resembles a membrane insertion intermediate is discussed.  相似文献   

7.
The intramolecular contacts in heterotrimeric G proteins that determine the rates of basal and receptor-stimulated nucleotide exchange are not fully understood. The alpha subunit of heterotrimeric G proteins consists of two domains: a Ras-like domain with structural homology to the monomeric G protein Ras and a helical domain comprised of six alpha-helices. The bound nucleotide lies in a deep cleft between the two domains. Exchange of the bound nucleotide may involve opening of this cleft. Thus interactions between the domains may affect the rate of nucleotide exchange in G proteins. We have tested this hypothesis in the alpha subunit of the rod cell G protein transducin (Galpha(t)). Site-directed mutations were prepared in a series of residues located at the interdomain interface. The proteins were expressed in vitro in a reticulocyte lysate system. The rates of basal and rhodopsin-catalyzed nucleotide exchange were determined using a trypsin digestion assay specifically adapted for kinetic measurements. Charge-altering substitutions of two residues at the interdomain interface, Lys(273) and Lys(276), increased basal nucleotide exchange rates modestly (5-10-fold). However, we found no evidence that interactions spanning the two domains in Galpha(t) significantly affected either basal or rhodopsin-catalyzed nucleotide exchange rates. These results suggest that opening of the interdomain cleft is not an energetic barrier to nucleotide exchange in Galpha(t). Experiments with Galpha(i1) suggest by comparison that the organization and function of the interdomain region differ among various G protein subtypes.  相似文献   

8.
X Ji  P Zhang  R N Armstrong  G L Gilliland 《Biochemistry》1992,31(42):10169-10184
The crystal structure of a mu class glutathione S-transferase (EC 2.5.1.18) from rat liver (isoenzyme 3-3) in complex with the physiological substrate glutathione (GSH) has been solved at 2.2-A resolution by multiple isomorphous replacement methods. The enzyme crystallized in the monoclinic space group C2 with unit cell dimensions of a = 87.98 A, b = 69.41 A, c = 81.34 A, and beta = 106.07 degrees. Oligonucleotide-directed site-specific mutagenesis played an important role in the solution of the structure in that the cysteine mutants C86S, C114S, and C173S were used to help locate the positions of mercuric ion sites in nonisomorphous derivatives with ethylmercuric phosphate and to align the sequence with the model derived from MIR phases. A complete model for the protein was not obtained until part of the solvent structure was interpreted. The dimer in the asymmetric unit refined to a crystallographic R = 0.171 for 19,298 data and I > or = 1.5 sigma (I). The final model consists of 4150 atoms, including all non-hydrogen atoms of 434 amino acid residues, two GSH molecules, and oxygen atoms of 474 water molecules. The dimeric enzyme is globular in shape with dimensions of 53 x 62 x 56 A. Crystal contacts are primarily responsible for conformational differences between the two subunits which are related by a noncrystallographic 2-fold axis. The structure of the type 3 subunit can be divided into two domains separated by a short linker, a smaller alpha/beta domain (domain I, residues 1-82), and a larger alpha domain (domain II, residues 90-217). Domain I contains four beta-strands which form a central mixed beta-sheet and three alpha-helices which are arranged in a beta alpha beta alpha beta beta alpha motif. Domain II is composed of five alpha-helices. Domain I can be considered the glutathione binding domain, while domain II seems to be primarily responsible for xenobiotic substrate binding. The active site is located in a deep (19-A) cavity which is composed of three relatively mobile structural elements: the long loop (residues 33-42) of domain I, the alpha 4/alpha 5 helix-turn-helix segment, and the C-terminal tail. GSH is bound at the active site in an extended conformation at one end of the beta-sheet of domain I with its backbone facing the cavity and the sulfur pointing toward the subunit to which it is bound.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Model-free methods are introduced to determine quantities pertaining to protein domain motions from normal mode analyses and molecular dynamics simulations. For the normal mode analysis, the methods are based on the assumption that in low frequency modes, domain motions can be well approximated by modes of motion external to the domains. To analyze the molecular dynamics trajectory, a principal component analysis tailored specifically to analyze interdomain motions is applied. A method based on the curl of the atomic displacements is described, which yields a sharp discrimination of domains, and which defines a unique interdomain screw-axis. Hinge axes are defined and classified as twist or closure axes depending on their direction. The methods have been tested on lysozyme. A remarkable correspondence was found between the first normal mode axis and the first principal mode axis, with both axes passing within 3 Å of the alpha-carbon atoms of residues 2, 39, and 56 of human lysozyme, and near the interdomain helix. The axes of the first modes are overwhelmingly closure axes. A lesser degree of correspondence is found for the second modes, but in both cases they are more twist axes than closure axes. Both analyses reveal that the interdomain connections allow only these two degrees of freedom, one more than provided by a pure mechanical hinge. Proteins 27:425–437, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
BACKGROUND: The mechanisms that allow or constrain protein movement have not been understood. Here we study interdomain interactions in proteins to investigate hinge-bending motions. RESULTS: We find a limited number of salt bridges and hydrogen bonds at the interdomain interface, in both the "closed" and the "open" conformations. Consistently, analysis of 222 salt bridges in an independently selected database indicates that most salt bridges form within rather than between independently folding hydrophobic units. Calculations show that these interdomain salt bridges either destabilize or only marginally stabilize the closed conformation in most proteins. In contrast, the nonpolar buried surface area between the moving parts can be extensive in the closed conformations. However, when the nonpolar buried surface area is large, we find that at the interdomain interface in the open conformation it may be as large or larger than in the closed conformation. Hence, the energetic penalty of opening the closed conformation is overcome. Consistently, a large nonpolar surface area buried in the closed interdomain interface accompanies limited opening of the domains, yielding a larger interface. CONCLUSIONS: Short-range electrostatic interactions are largely absent between moving domains. Interdomain nonpolar buried surface area may be large in the closed conformation, but it is largely offset by the area buried in the open conformation. In such cases the opening of the domains appears to be relatively small. This may allow prediction of the extent of domain opening. Such predictions may have implications for the shape and size of the binding pockets in drug/protein design.  相似文献   

11.
A 3-ns molecular dynamics simulation in explicit solvent was performed to examine the inter- and intradomain motions of the two-domain enzyme yeast phosphoglycerate kinase without the presence of substrates. To elucidate contributions from individual domains, simulations were carried out on the complete enzyme as well as on each isolated domain. The enzyme is known to undergo a hinge-bending type of motion as it cycles from an open to a closed conformation to allow the phosphoryl transfer occur. Analysis of the correlation of atomic movements during the simulations confirms hinge bending in the nanosecond timescale: the two domains of the complete enzyme exhibit rigid body motions anticorrelated with respect to each other. The correlation of the intradomain motions of both domains converges, yielding a distinct correlation map in the enzyme. In the isolated domain simulations—in which interdomain interactions cannot occur—the correlation of domain motions no longer converges and shows a very small correlation during the same simulation time. This result points to the importance of interdomain contacts in the overall dynamics of the protein. The secondary structure elements responsible for interdomain contacts are also discussed.  相似文献   

12.
DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA in a strand passage mechanism. A double-stranded segment of DNA, the T-segment, is passed through the gap in a transiently cleaved G-segment by coordinated closing and opening of three protein interfaces in gyrase. T-segment capture is thought to be guided by the C-terminal domains of the GyrA subunit of gyrase that wrap DNA around their perimeter and cause a DNA-crossing with a positive handedness. We show here that the C-terminal domains are in a downward-facing orientation in the absence of DNA, but swing up and rotate away from the gyrase body when DNA binds. The upward movement of the C-terminal domains is an early event in the catalytic cycle of gyrase that is triggered by binding of a G-segment, and first contacts of the DNA with the C-terminal domains, and contributes to T-segment capture and subsequent strand passage.  相似文献   

13.
Using a data set of aligned protein domain superfamilies of known three-dimensional structure, we compared the location of interdomain interfaces on the tertiary folds between members of distantly related protein domain superfamilies. The data set analyzed is comprised of interdomain interfaces, with domains occurring within a polypeptide chain and those between two polypeptide chains. We observe that, in general, the interfaces between protein domains are formed entirely in different locations on the tertiary folds in such pairs. This variation in the location of interface happens in protein domains involved in a wide range of functions, such as enzymes, adapters, and domains that bind protein ligands, or cofactors. While basic biochemical functionality is preserved at the domain superfamily level, the effect of biochemical function on protein assemblies is different in these protein domains related by superfamily. The divergence between proteins, in most cases, is coupled with domain recruitment, with different modes of interaction with the recruited domain. This is in complete contrast to the observation that in closely related homologous protein domains, almost always the interaction interfaces are topologically equivalent. In a small subset of interacting domains within proteins related by remote homology, we observe that the relative positioning of domains with respect to one another is preserved. Based on the analysis of multidomain proteins of known or unknown structure, we suggest that variation in protein-protein interactions in members within a superfamily could serve as diverging points in otherwise parallel metabolic or signaling pathways. We discuss a few representative cases of diverging pathways involving domains in a superfamily.  相似文献   

14.
The crystal structure of holo hen ovotransferrin N-lobe refined at 1.65 A resolution has been obtained. The final model gave an R-factor of 0.173 in the resolution range between 10.0 and 1.65 A. The comparison of the structure with previous high-resolution apo and Fe(3+)-loaded, domain-opened intermediate structures provides new viewpoints on the domain closure mechanism upon Fe(3+) uptake in ovotransferrin N-lobe. Overall, conformational transition follows the common mechanism that has been first demonstrated for lactoferrin N-lobe; the domains 1 and 2 rotate 49.7 degrees as rigid bodies with a translation of 2.1 A around a screw-axis that passes through the two interdomain beta-strands (89-94 and 244-249). It is generally believed that the two strands display a hinge-like motion. Here, the latter strand indeed displays an ideal hinge nature: the segments 244-246 and 248-249 behave as a part of the rigid body of domain 2 and that of domain 1, respectively, and a sharp bend upon the domain closure is largely accounted for by the changes in the torsion angles phi and psi of Val247. We find, however, that the mode of the conformational change in the first beta-strand is much more complex. Two of the five inter beta-strand hydrogen bonds undergo crucial exchanges: from Ser91-N...Val247-O and Thr89-O...Ala249-N in the open apo and intermediate structures into Tyr92-N...Val247-O and Thr90-O...Ala249-N in the closed holo structure. These exchanges, which may be triggered in the intermediate state by modulation in the topological relation between the Fe(3+)-ligated hinge residue Tyr92-OH and the anion anchor residues of helix 5, are accompanied by a large conformational change and extensive hydrogen bonding rearrangements in a long stretch of segment of Glu82 to Tyr92. Such structural transition would work as a driving force for the domain closure, which highlights a "door closer"-like role, in addition to the canonical-hinge role, for the interdomain polypeptide segment pair. As an alternative hinge that secures the correct domain motion by being placed on a significant distance from the beta-strand hinge, we point out the participation of the van der Waals contacts formed between domain 1 residue of Met331 and domain 2 residues of Trp125, Ile129 and Trp140.  相似文献   

15.
X-ray crystal structure of D-xylose isomerase at 4-A resolution   总被引:10,自引:0,他引:10  
The structure of D-xylose isomerase from Streptomyces rubiginosus has been determined at 4-A resolution using multiple isomorphous phasing techniques. The folding of the polypeptide chain has been established and consists of two structural domains. The larger domain consists of eight beta-strand alpha-helix (beta alpha) units arranged in a configuration similar to that found for triose phosphate isomerase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and pyruvate kinase. The smaller domain forms a loop away from the larger domain but overlapping the larger domain of another subunit so that a tightly bound dimer is formed. The tetramer then consists of two such dimers. The location of the active site in the enzyme has been tentatively identified from studies using a crystal grown from a solution containing the inhibitor xylitol.  相似文献   

16.
The interdomain disulfide bond present in the C-lobe of all the transferrins was postulated to restrict the domain movement resulting in the slow rate of iron uptake and release. In the present study, the conformational stability and iron binding properties of a derivative of the isolated C-lobe of ovotransferrin in which the interdomain disulfide bond, Cys478-Cys671 was selectively reduced and alkylated with iodoacetamide were compared with the disulfide intact form at the endosomal pH of 5.6. Pyrophosphate and chloride mediated iron release kinetics showed no difference between the disulfide-intact and disulfide-reduced/alkylated forms; the two protein forms yielded similar observed rate constants showing an apparent hyperbolic dependency for anion concentrations. The conformational stability evaluated by unfolding and refolding experiments was greater for the disulfide-intact form than for the disulfide-reduced/alkylated form: the deltaG(D)H2O values at 30 degrees C obtained by using urea were 9.0+/-0.8 and 6.0+/-0.4 kJ/mol for the former and latter protein forms, respectively, and the corresponding values obtained by using guanidine hydrochloride were 6.2+/-0.9 and 4.3+/-0.5 kJ/mol. The dissociation constant of iron (kd) was almost the same for the two protein forms, and it varied only subtly with urea concentrations but increased markedly with GdnHCl concentrations. The nonidentical values of deltaG(D)H2O and kd for urea and GdnHCl can be attributed to the ionic nature of the later denaturant, in which chloride anion may influence the structure and iron uptake-release properties of the ovotransferrin C-lobe. Taken together, we conclude that the interdomain disulfide bond has no effect on the iron uptake and release function but significantly decreases the conformational stability in the C-lobe.  相似文献   

17.
FimH is a mannose-specific adhesin located on the tip of type 1 fimbriae of Escherichia coli that is capable of mediating shear-enhanced bacterial adhesion. FimH consists of a fimbria-associated pilin domain and a mannose-binding lectin domain, with the binding pocket positioned opposite the interdomain interface. By using the yeast two-hybrid system, purified lectin and pilin domains, and docking simulations, we show here that the FimH domains interact with one another. The affinity for mannose is greatly enhanced (up to 300-fold) in FimH variants in which the interdomain interaction is disrupted by structural mutations in either the pilin or lectin domains. Also, affinity to mannose is dramatically enhanced in isolated lectin domains or in FimH complexed with the chaperone molecule that is wedged between the domains. Furthermore, FimH with native structure mediates weak binding at low shear stress but shifts to strong binding at high shear, whereas FimH with disrupted interdomain contacts (or the isolated lectin domain) mediates strong binding to mannose-coated surfaces even under low shear. We propose that interactions between lectin and pilin domains decrease the affinity of the mannose-binding pocket via an allosteric mechanism. We further suggest that mechanical force at high shear stress separates the two domains, allowing the lectin domain to switch from a low affinity to a high affinity state. This shift provides a mechanism for FimH-mediated shear-enhanced adhesion by enabling the adhesin to form catch bond-like interactions that are longer lived at high tensile force.  相似文献   

18.
Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution   总被引:20,自引:0,他引:20  
The structure of the lysozyme from bacteriophage T4 has been refined at 1.7 A resolution to a crystallographic residual of 19.3%. The final model has bond lengths and bond angles that differ from "ideal" values by 0.019 A and 2.7 degrees, respectively. The crystals are grown from electron-dense phosphate solutions and the use of an appropriate solvent continuum substantially improved the agreement between the observed and calculated structure factors at low resolution. Apart from changes in the conformations of some side-chains, the refinement confirms the structure of the molecule as initially derived from a 2.4 A resolution electron density map. There are 118 well-ordered solvent molecules that are associated with the T4 lysozyme molecule in the crystal. Four of these are more-or-less buried. There is a clustering of water molecules within the active site cleft but, other than this, the solvent molecules are dispersed around the surface of the molecule and do not aggregate into ice-like structures or pentagonal or hexagonal clusters. The apparent motion of T4 lysozyme in the crystal can be interpreted in terms of significant interdomain motion corresponding to an opening and closing of the active site cleft. For the amino-terminal domain the motion can be described equally well (correlation coefficients approx. 0.87) as quasi-rigid-body motion either about a point or about an axis of rotation. The motion in the crystals of the carboxy-terminal domain is best described as rotation about an axis (correlation coefficient 0.80) although in this case the apparent motion seems to be influenced in part by crystal contacts and may be of questionable relevance to dynamics in solution.  相似文献   

19.
Human eye lens transparency requires life long stability and solubility of the crystallin proteins. Aged crystallins have high levels of covalent damage, including glutamine deamidation. Human gammaD-crystallin (HgammaD-Crys) is a two-domain beta-sheet protein of the lens nucleus. The two domains interact through interdomain side chain contacts, including Gln-54 and Gln-143, which are critical for stability and folding of the N-terminal domain of HgammaD-Crys. To test the effects of interface deamidation on stability and folding, single and double glutamine to glutamate substitutions were constructed. Equilibrium unfolding/refolding experiments of the proteins were performed in guanidine hydrochloride at pH 7.0, 37 degrees C, or urea at pH 3.0, 20 degrees C. Compared with wild type, the deamidation mutants were destabilized at pH 7.0. The proteins populated a partially unfolded intermediate that likely had a structured C-terminal domain and unstructured N-terminal domain. However, at pH 3.0, equilibrium unfolding transitions of wild type and the deamidation mutants were indistinguishable. In contrast, the double alanine mutant Q54A/Q143A was destabilized at both pH 7.0 and 3.0. Thermal stabilities of the deamidation mutants were also reduced at pH 7.0. Similarly, the deamidation mutants lowered the kinetic barrier to unfolding of the N-terminal domain. These data indicate that interface deamidation decreases the thermodynamic stability of HgammaD-Crys and lowers the kinetic barrier to unfolding due to introduction of a negative charge into the domain interface. Such effects may be significant for cataract formation by inducing protein aggregation or insolubility.  相似文献   

20.
An ATP-dependent protease, FtsH, digests misassembled membrane proteins in order to maintain membrane integrity and digests short-lived soluble proteins in order to control their cellular regulation. This enzyme has an N-terminal transmembrane segment and a C-terminal cytosolic region consisting of an AAA+ ATPase domain and a protease domain. Here we present two crystal structures: the protease domain and the whole cytosolic region. The cytosolic region fully retains an ATP-dependent protease activity and adopts a three-fold-symmetric hexameric structure. The protease domains displayed a six-fold symmetry, while the AAA+ domains, each containing ADP, alternate two orientations relative to the protease domain, making "open" and "closed" interdomain contacts. Apparently, ATPase is active only in the closed form, and protease operates in the open form. The protease catalytic sites are accessible only through a tunnel following from the AAA+ domain of the adjacent subunit, raising a possibility of translocation of polypeptide substrate to the protease sites through this tunnel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号