首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We have previously shown that, in the rat, ovarian beta-adrenergic receptor content varies during the time of puberty, with values first increasing and then decreasing abruptly on the afternoon of the first proestrus, i.e., at the time of the preovulatory surge of gonadotropins and prolactin (Prl). In the present study, experiments have been conducted to determine: 1) if hormones other than follicle stimulating hormone (FSH) that are known to be involved in regulating prepubertal ovarian function can mimic the facilitatory effect of FSH on progesterone (P) response of granulosa cells to beta-adrenergic stimulation; 2) if beta-adrenergic receptor content of granulosa cells is under hormonal regulation; and 3) whether the facilitatory effect of hormones on the P response to beta-adrenergic stimulation is due to an increased cyclic AMP response to receptor activation. A 48-h in vitro preexposure of granulosa cells from juvenile, 29-day-old ovaries to the pituitary hormones Prl, luteinizing hormone (LH), or FSH showed that only the latter was able to facilitate the subsequent P response to Zinterol, a beta2-adrenergic agonist. Follicle-stimulating hormone also increased basal P release. Of the two nonpituitary hormones examined, the luteinizing hormone-releasing hormone (LHRH) agonist D-(Ala6,Pro9)-LHRH-ethylamide (LHRH-A) failed to affect P responsiveness, whereas corticosterone enhanced both basal P release and P response to Zinterol. This effect was less pronounced than that of FSH. Luteinizing hormone, Prl and corticosterone decreased beta-adrenergic receptor content to different extents, with corticosterone being the most effective and LH the least (50% and 15% decrease, respectively); LHRH-A was ineffective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Binding of 125I-prolactin (Prl) to hamster ovarian homogenates was found to decrease markedly at the time of the preovulatory gonadotropin surge (PGS). Saturation analysis revealed that the decrease was due to a reduction in the number of available Prl receptors and not due to a change in binding affinity. Loss of Prl receptors following the PGS was not affected by treatment with ergocryptine to block the release of pituitary Prl, indicating that the reduction in the number of available Prl receptors was not due to increased occupancy by endogenous Prl. Loss of Prl receptors was prevented by treatment with phenobarbital (Phen) to block the normal luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surge; whereas, an injection of 50 micrograms of LH or 50 micrograms FSH (but not 100 micrograms Prl) induced a marked decrease in Prl receptors in Phen-treated hamsters. To determine whether Prl receptor loss induced by 50 micrograms FSH might be due to LH contamination, Phen-treated hamsters were injected with minimal ovulatory doses of LH and FSH. Injection of 5 micrograms or 2.5 micrograms LH induced a loss of Prl receptors in 90% and 70% of Phen-treated hamsters, respectively. In contrast, injection of 5 micrograms or 2.5 micrograms FSH induced a loss of Prl receptors in 0% and 20% of Phen-treated hamsters, respectively. These results indicate that the PGS causes an acute heterologous down regulation of ovarian Prl receptors and suggest that this down regulation may be due principally to the action of LH.  相似文献   

3.
Transfer of male golden (Syrian) hamsters from a 14L:10D (light:dark) to a 5L:19D photoperiod induced significant changes in pituitary function tested in vitro. Within 27 days after transfer to a 5L:19D photoperiod, basal prolactin (Prl) release was significantly depressed and response to dopamine (DA) was significantly enhanced as compared to Prl release by pituitaries from 14L: 10D hamsters. Follicle-stimulating hormone (FSH) release tended to be depressed after 9 or 27 days of 5L:19D exposure, but the effect was not significant. After 77 days of 5L:19D exposure, Prl release was further suppressed, while FSH release surpassed that seen in 14L:10D pituitaries. In vitro FSH response to luteinizing hormone releasing hormone (LHRH) was also enhanced at this time. After 15 weeks of exposure to a short photoperiod, FSH secretion was still elevated above control levels, but Prl release and Prl response to DA were no longer different from that of 14L: 10D controls. Secretion of luteinizing hormone (LH) in vitro, either basal or LHRH stimulated, was not affected by photoperiod at any time tested. From these results, we conclude that short photoperiod exposure does not reduce the pituitary's ability to secrete LH or FSH, although secretion of Prl is severely attenuated.  相似文献   

4.
The effects of morphine dependence and withdrawal on prolactin (Prl) and growth hormone (GH) secretion were examined in the rat. Morphine dependence, induced by morphine pellet implantation, had no effect on nonstress concentrations of plasma Prl or GH, but it potentiated the response of Prl secretion to the stress associated with blood collection + injection of saline. Naloxone-induced withdrawal had no demonstrable effect on the changes in Prl and GH secretion produced by stress. In addition, signs of tolerance to both the Prl- and GH-stimulating effects of morphine injection were observed in morphine-dependent rats.  相似文献   

5.
The effects of third ventricular (3V) injection of the beta-adrenergic antagonist, propranolol (PROPR), a selective beta 1-antagonist, metoprolol (MET), a selective beta 2-antagonist, IPS 339, and a beta-adrenergic agonist (-) isoproterenol (ISOPR), on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), and growth hormone (GH) were studied in conscious, ovariectomized (OVX) rats. Samples were removed from unrestrained rats which had been previously implanted with atrial and 3V cannulae, and plasma hormone levels were determined by radioimmunoassay (RIA). Intraventricular injection of PROPR (30 micrograms), MET (40 micrograms), or IPS 339 (20 micrograms) induced a gradual elevation in plasma GH concentrations, whereas ISOPR (30 micrograms) reduced plasma GH. ISOPR (30 micrograms) brought about a decrease in plasma LH concentrations, but PROPR, MET and IPS 339 had no effect on LH levels. PROPR (30 micrograms) increased plasma FSH concentrations, but there was no significant effect of MET, IPS 339 or ISOPR on FSH secretion. The results indicate that the beta-adrenergic system can inhibit the release of GH, LH, and FSH. This system appears to have a tonic inhibitory effect on GH and FSH but not LH release in the OVX rat.  相似文献   

6.
Ovarian and adrenal membranes from immature gonadotropin-primed rats, treated with 4-amino-pyrazolopyrimidine (4APP) to reduce endogenous lipoprotein levels, displayed higher binding of porcine high-density lipoprotein (HDL) when compared to control rats. Immature, hypophysectomized (HYPOX) rats bearing corpora lutea (CL) on Day 5 after ovulation had lower levels of serum progesterone and reduced capacity for HDL and human chorionic gonadotropin (hCG) binding to ovarian membranes when compared with intact animals. Hypophysectomy also reduced the number of HDL binding sites in adrenal membranes. Treatment of HYPOX animals with luteinizing hormone (LH) and prolactin (Prl) alone or in combination increased the HDL binding sites in the ovary relative to HYPOX-untreated rats. Neither hormone affected binding to adrenals, where only adrenocorticotropic hormone (ACTH) enhanced HDL binding. LH treatment reduced the serum progesterone levels and hCG binding to the ovaries, whereas Prl administration increased progesterone levels with no effect on hCG binding. We conclude from this study that HDL binding in the luteinized ovary is regulated by Prl and LH and circulating lipoproteins, whereas in adrenals it is regulated by ACTH and circulating levels of lipoproteins.  相似文献   

7.
Factors other than adrenocorticotropic hormone (ACTH) are thought to influence fetal adrenal steroidogenesis during primate pregnancy. Therefore, we determined the effects of prolactin (Prl), growth hormone (GH), and human chorionic gonadotropin (hCG) as well as ACTH on steroid secretion by collagenase-dispersed baboon fetal adrenal cells. Adrenal glands were obtained from seven baboon (Papio anubis) fetuses following cesarean section at Day 100-107 of gestation (term = Day 184). Tissue was minced with a fine scissors and cells were dispersed with 0.2% collagenase, then washed with Medium 199 containing penicillin/streptomycin. Cells (0.5 X 10(4)) were placed in 4 ml Medium 199 with or without 10 nmol ovine Prl, ovine GH, or ACTH, or 50 nmol hCG. After 18 h incubation (37 degrees C), cells were separated by centrifugation and the quantities of cortisol (F), dehydroepiandrosterone (DHA), and DHA-sulfate (DHAS) secreted into the medium were determined. In controls, DHA secretion [224 +/- 96 ng/(24 h X 10(5) cells] was greater (P less than 0.05) than that of DHAS (20 +/- 12) and F (14 +/- 12). Adrenocorticotropic hormone, Prl, and GH stimulated (P less than 0.05) DHA secretion by 370% +/- 71%, 215% +/- 61%, and 292% +/- 73%, respectively; hCG was not effective. Due primarily to the relatively low secretion rates, DHAS and F secretion were not altered by hormonal treatment. Moreover, addition of 20 nmol progesterone to the medium in the presence or absence of ACTH did not influence F production. These findings indicate that the baboon fetal adrenal at midgestation does not utilize placental progesterone for F synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Hypothalamic regulation of anterior pituitary hormones is thought to be mediated by the release of stimulatory and/or inhibitory peptides that are, in turn, regulated by catecholaminergic neurons. The recent development of selective epinephrine (EPI) synthesis inhibitors has made it possible to disrupt central EPI neurotransmission without affecting norepinephrine or dopamine. These compounds were used in the present investigation to assess the involvement of brain EPI systems in regulation of GH, LH, and prolactin (PRL) in male and ovariectomized female rats. Inhibition of central EPI synthesis (1) inhibited episodic and morphine-, but not clonidine-induced GH release, and (2) blocked the LH surge induced by estrogen and progesterone, but did not affect episodic LH release in hormonally untreated rats. Inhibition of peripheral (adrenal) EPI synthesis had no effect on these hormones. Results of these studies suggest an excitatory role for EPI in regulation of GH and LH secretion, mediated by stimulation of GH-releasing hormone and LHRH, respectively. EPI does not appear to have a major function in regulation of PRL secretion.  相似文献   

9.
Autoradiographic histochemistry was employed to examine changes in the binding of 125I-labeled prolactin (Prl) to ovaries from proestrous hamsters before (at 1200 h), during (at 1600 h), and after (at 2000 h) the preovulatory gonadotropin surge. In untreated control hamsters, there was a marked and progressive loss of Prl binding, first in the interstitial cells and follicular thecae by 1600 h, and then in the granulosa cells of the preovulatory follicles by 2000 h. When proestrous hamsters were treated with ergocryptine to significantly lower serum Prl, or injected with exogenous Prl, Prl binding to their ovaries did not differ from controls, suggesting that decreased Prl binding was due to neither increased occupancy of binding sites by endogenous Prl nor down regulation of Prl receptors by Prl itself. Conversely, when proestrous hamsters were treated with phenobarbital to block the luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surge, the loss of Prl binding sites in the ovaries was prevented, suggesting that the LH/FSH surge might initiate a down regulation of Prl receptors in the ovary. Such a down regulation of Prl receptors may serve as a mechanism by which the ability of Prl to affect periovulatory events in the ovary might be regulated.  相似文献   

10.
6-Methoxybenzoxazolinone (6-MBOA) is a novel plant metabolite that enhances reproductive status in vertebrate consumers while it inhibits insect, fungal, and bacterial infestation of the plant. Ovaries of prepubertal rats show a dose response to increasing amounts of 6-MBOA.administered in Silastic capsule implants. Ovaries increased in size in response to capsules with 0.5-3.0 cm exposed surface area of 6-MBOA, whereas larger capsules (6 cm 6-MBOA) had no effect. Removal of the pituitary in both prepubertal and mature rats eliminated the stimulatory influence of 6-MBOA. In hypophysectomized animals treated with diethylstibestrol implants, 6-MBOA did not affect ovarian weight and no animals ovulated. Administration of follicle-stimulating hormone (FSH) increased ovarian weight and stimulated production of ova, and FSH combined with 6-MBOA resulted in larger ovaries that released more ova. 6-MBOA also enhanced ovarian growth in intact prepubertal animals treated with pregnant mare's serum gonadotropin. These results show that 6-MBOA has the ability to interact with FSH to stimulate follicular development and increase ovulation. Non-steroidal plant compounds may have a significant impact on the reproductive patterns of wild animal populations.  相似文献   

11.
The central effects of both an antagonist and an antiserum to substance P (SP) on gonadotropin and prolactin (Prl) secretion were studied in castrated male rats. The lateral ventricular injection (20 micrograms) of an analogue to SP possessing antagonistic properties resulted in significantly suppressed serum LH levels without altering serum FSH and Prl levels when compared with saline-injected control animals. Similarly, the lateral ventricular injection of an antiserum to SP also resulted in significantly suppressed LH levels when compared to control animals injected with normal rabbit serum. Additionally, no changes were observed in the levels of serum FSH and Prl as a result of the anti-SP injection. Thus, although indirect, these results support the hypothesis that SP may have a central stimulatory action on LH secretion, but not FSH and Prl secretion.  相似文献   

12.
This career retrospective describes how the initial work on the mechanism of hormone action provided the tools for the study of hirsutism, virilism, and polycystic ovarian disease. After excessive ovarian and or adrenal androgen secretion in polycystic ovarian disease had been established, the question whether the disease was genetic or acquired, methods to manage hirsutism and methods for the induction of ovulation were addressed. Recognizing that steroid gonadotropin feedback was an important regulatory factor, initial studies were done on the secretion of LH and FSH in the ovulatory cycle. This was followed by the study of basic mechanisms of steroid-gonadotropin feedback system, using castration and steroid replacement and the events surrounding the natural onset of puberty. Studies in ovariectomized rats showed that progesterone was a pivotal enhancer of estrogen-induced gonadotropin release, thus accounting for the preovulatory gonadotropin surge. The effects of progesterone were manifested by depletion of the occupied estrogen receptors of the anterior pituitary, release of hypothalamic LHRH, and inhibition of enzymes that degrade LHRH. Progesterone also promoted the synthesis of FSH in the pituitary. The 3α,5α-reduced metabolite of progesterone brought about selective LH release and acted using the GABA(A) receptor system. The 5α-reduced metabolite of progesterone brought about selective FSH release; the ability of progesterone to bring about FSH release was dependent on its 5α-reduction. The GnRH neuron does not have steroid receptors; the steroid effect was shown to be mediated through the excitatory amino acid glutamate, which in turn stimulated nitric oxide. These observations led to the replacement of the long-accepted belief that ovarian steroids acted directly on the GnRH neuron by the novel concept that the steroid feedback effect was exerted at the glutamatergic neuron, which in turn regulated the GnRH neuron. The neuroprotective effects of estrogens on brain neurons are of considerable interest.  相似文献   

13.
This experiment concerned the changing patterns in secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and growth hormone (GH) under conditions of food restriction and subsequent catch-up growth. Weanling male rats were given either restricted (4 g food/day) or unrestricted access to food until 60 days of age. At this age, food-restricted rats weighed only 25% as much as rats fed ad libitum. Food restriction resulted in a dramatic decrease in the frequency of LH and GH pulses, and in the amplitude of GH pulses. It also slightly but significantly decreased mean blood levels of FSH (which was not secreted in a pulsatile manner in 60-day-old controls fed ad libitum). When restricted rats were given unrestricted access to food, frequency of LH and GH pulses and mean levels of FSH increased significantly and simultaneously within 2 days in half of the animals. Only an additional 8-10% of their body weight decrement was recovered at this time. After 10 days of food restoration, when restricted rats still weighed 50% less than controls, their secretory patterns of all three hormones were not significantly different from those of controls. Thus, recovery of gonadotropin and GH secretion was relatively rapid. Except for the quantitatively lesser impact of food restriction on FSH secretion, there was no evidence of any priorities in the secretion of the three hormones. Under conditions of rapid catch-up growth, the secretory patterns of LH, FSH, and GH appeared to develop simultaneously.  相似文献   

14.
Efferent duct ligation was used to assess seminiferous tubule fluid (TF) production and studies of the kinetics of TF production following this procedure were performed on 25-day-old rats. The rate of TF production was linear for 48 h, thereafter reached a plateau until 72 h and began decreasing at 96 h post-ligation. Using a 16-h ligation period, the onset of TF production was investigated in groups of immature rats from 15 days of age. TF secretion was not detected prior to 15 days but rose rapidly after Day 20 coincident with the prepubertal rise in serum FSH. The acute effect of hormone on TF production following unilateral efferent duct ligation (EDL) was evaluated in 25-day-old rats in which interstitial fluid production (IF) was also assessed in the unligated testis by the method of Sharpe (1977). Single subcutaneous injections of the following hormones were given to groups of rats at the time of EDL: a) NIH follicle-stimulating hormone (FSH) S13 (20 micrograms/rat); b) NIH luteinizing hormone (LH) S22 (200 micrograms/rat); c) testosterone propionate (2 mg/rat); d) human chorionic gonadotropin (hCG) (10 IU/rat); or e) NIH prolactin (Prl) 14 (200 micrograms/rat). A significant rise in TF production occurred following FSH treatment but no effect was noted in any of the other groups. In contrast, a marked stimulation of IF production occurred in rats treated with LH or hCG.  相似文献   

15.
Conscious ovariectomized (OVX) rats bearing a cannula implanted in the 3rd ventricle were injected with 2 μl of 0.9% NaCl containing varying doses of synthetic gastrin and plasma gonadotropin, GH and TSH levels were measured by RIA in jugular blood samples drawn through an indwelling silastic catheter. Control injections of saline iv or into the 3rd ventricle did not modify plasma hormone levels. Intraventricular injection of 1 or 5 μg gastrin produced significant suppression of plasma LH and prolactin (Prl) levels within 5 min of injection. Injection of 1 μg gastrin had no effect on plasma GH, but increasing the dose to 5 μg induced a progressive elevation, which reached peak levels at 60 min. By contrast, TSH levels were lowered by both doses of gastrin within 5 min of injection and the lowering persisted for 60 min. Intravenous injection of gastrin had no effect on plasma gonadotropin, GH and TSH, but induced an elevation in Prl levels. Invitro incubation of hemipituitaries with gastrin failed to modify gonadotropin, GH or Prl but slightly inhibited TSH release at the highest dose of 5 μg gastrin. The results indicate that synthetic gastrin can alter pituitary hormone release in unrestrained OVX rats and implicate a hypothalamic site of action for the peptide to alter release of a gonadotropin, Prl and GH. Its effect on TSH release may be mediated both via hypothalamic neurons and by a direct action on pituitary thyrotrophs.  相似文献   

16.
The effect of chronic exposure to elevated environmental temperature on gonadotropin secretion and ovarian function was studied in prepubertal gilts. Gilts were maintained under control (15.6 degrees C) or elevated temperature (33.3 degrees C) conditions from 150 to 180 days of age. Endocrine and ovarian responses to bilateral (BLO), unilateral (ULO), and sham ovariectomy were evaluated between 175 and 180 days of age. During the 96-h sampling period after BLO, plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were suppressed in heat-stressed females. Similarly, elevated temperatures abolished the transient rise in FSH and subsequent follicular growth normally associated with ULO. In contrast, environmental treatment had no effect on the secretion of FSH and LH after sham ovariectomy, yet the number of small follicles was lower in gilts exposed to elevated temperatures than in females maintained under control conditions. These results indicate that a chronic exposure to elevated environmental temperature during pubertal development diminished the ability of the hypothalamo-hypophyseal axis to secrete FSH and LH, which had physiological consequences on follicular growth. When provided an appropriate stimulus (ULO), an acute period of FSH secretion and subsequent development of follicles failed to occur in females exposed to elevated temperatures. Consequently, we propose that delayed puberty in gilts during periods of elevated environmental temperatures is due, in part, to a diminished capacity for gonadotropin secretion.  相似文献   

17.
In the rat, ovarian follicle-stimulating hormone (FSH) receptors increase markedly during the first two postnatal weeks, when serum gonadotropin levels are most elevated. This study was conducted to evaluate the hypothesis that these high gonadotropin levels, and in particular FSH, are involved in the acquisition of FSH receptors by the developing ovary. Gonadotropin release was suppressed by administration of several non-aromatizable androgens, among which dihydrotestosterone propionate (DHTP) was the most effective. In one series of experiments the steroids were administered from Days 5 to 11, and serum FSH and luteinizing hormone (LH) were measured on Day 12. Surprisingly, FSH receptor content was greater in rats with suppressed serum gonadotropins than in controls. The greatest increase in available receptors was observed in DHTP-treated rats in which serum FSH was reduced to 20% of control values and LH suppressed to undetectable values. DHTP failed to directly increase available FSH receptors in hypophysectomized immature rats. Magnesium chloride (MgCl2) treatment of ovarian membranes removed bound 125I-hFSH by 87% without affecting receptor viability. Exposure of control 12-day-old ovaries to MgCl2 increased available FSH receptors to a level similar to that of ovaries from DHTP-treated rats not exposed to MgCl2, suggesting that more receptors were available in DHTP-treated rats because serum FSH was suppressed. Earlier initation of DHTP treatment (postnatal Day 1) suppressed serum FSH and LH to undetectable values by Day 5 and decreased FSH receptor content below control values by Day 12. MgCl2 treatment only slightly increased available receptors in these DHTP-treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Gonadotropin and prolactin response to estrogen feedback in female rat offspring of control and melatonin treated (150 microg/100 g BW) mother rats during pregnancy (MEL-offspring) were studied at these periods: infantile, prepubertal and pubertal. In controls negative or absent LH feedback developed after estradiol benzoate (EB) injection up to 30 days of age indicating that the onset of puberty had not occurred. The positive feedback was established from day 33 on. However, in MEL-offspring the first activation of gonadotropin secretion during afternoon, 31 h after EB, was observed at 25 days of age, representing the first neuroendocrine sign of the onset of puberty. This positive response disappeared on day 30 in MEL-offspring. At 33 days of age, the LH positive response to EB was found in both groups, indicating a more advanced sexual development. In controls, this response increased at 35 days of age while in MEL-offspring it was highly depressed. FSH secretion in response to EB showed a negative feedback effect from infantile to the end of prepubertal period in both groups. The positive feedback was observed earlier in MEL-offspring (at 33 days of age) than in controls (at 35 days of age), but at this age it was absent in MEL-offspring. A positive prolactin response to EB at all ages in controls was observed. The typical pulsatility with higher values in the afternoon appeared by the first time at 30 days of age. However, in MEL-offspring no pulsatile response was observed throughout any age. These data suggest that prenatal melatonin administration altered gonadotropin and prolactin response to EB inducing precocious sensitivity during prepubertal period but depressed response during the pubertal period.  相似文献   

19.
Reportedly, excitatory amino acids are involved in the control of gonadotropin secretion of rats and non-human primates. The aim of this study was to investigate the effect of chronic blockade of NMDA (N-methyl-D-aspartic acid) receptors by the non competitive receptor antagonist MK-801 on gonadotropin secretion and the onset of puberty in female rats. Moreover, since in humans alterations of the timing of puberty frequently coexist with disturbances of body growth, suggesting a common etiology for both events, we evaluated the effect of MK-801 also on the neural mechanisms controlling growth hormone (GH) secretion. Twenty-one-day-old female rats were treated with MK-801 (0.2 mg/kg ip, bid) or placebo for 10 days and were killed after 7 days of withdrawal. Administration of MK-801 induced a significant impairment of growth rate without altering food intake, and a delay in vaginal opening. Pituitaries from rats treated with MK-801 had a reduced luteinizing hormone (LH) content, and secreted in vitro lower amounts of LH both under basal and LHRH-stimulated conditions. MK-801 treated rats had a lower pituitary GH content and basal and GHRH-stimulated GH release and reduced plasma insulin-like growth factor-I levels. These data indicate that blockade of NMDA receptors in a critical period of the female rat life-span: 1) delays puberty by reducing gonadotropin secretion; 2) impairs growth rate by reducing GH secretion, with a mechanism still to be clarified.  相似文献   

20.
Inoculation of cyclic female rats with the prolactin (Prl)/growth hormone-secreting pituitary tumor, MtT.W15, resulted in a cessation of estrous cyclicity within 5--10 days. Associated with this acyclicity was a persistently low serum concentration of estradiol and marked increases in both circulating Prl and progesterone. At Day 26 of acyclicity, basal serum luteinizing hormone (LH) values measured in samples taken every 20 min from 0900--1100 h were significantly reduced when compared to cyclic, nontumor animals on diestrus Day 2. There was no difference in basal follicle-stimulating hormone (FSH) concentrations. In a separate group of acyclic, tumor-bearing females 42--56 days after transplantation, a single s.c. injection of 20 micrograms estradiol benzoate (EB) at 1030 h elicited significant increases in both serum LH and FSH values between 1700 and 1830 h on the next day. The magnitude of the LH surge was reduced and that of FSH was increased in tumor-bearing animals when compared to cyclic, nontumor females given a similar EB injection on diestrus Day 1. These results demonstrate that chronic hyperprolactinemia is associated with inhibition of basal LH secretion and ovarian estrogen production and an increase in circulating progesterone concentrations. Nevertheless, the stimulatory feedback effects of estrogen on LH and FSH release are still present and functioning in acyclic female rats under chronically hyperprolactinemic conditions. These data suggest that the cessation of regular ovulatory cycles associated with hyperprolactinemia may be due to a deficiency of LH and/or estrogen secretion, but not to a lack of central nervous system response to the stimulatory feedback action of estrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号