首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Neurodegenerative diseases are associated with misfolding and deposition of specific proteins, either intra or extracellularly in the nervous system. Advanced glycation end products (AGEs) originate from different molecular species that become glycated after exposure to sugars. Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. To this concern, in the present study we have investigated the effect of glycation on the aggregation pathway of the amyloidogenic W7FW14F apomyoglobin. Although this protein has not been related to any amyloid disease, it represents a good model to resemble proteins that intrinsically evolve toward the formation of amyloid aggregates in physiological conditions. We show that D-ribose, but not D-glucose, rapidly induces the W7FW14F apomyoglobin to generate AGEs in a time-dependent manner and protein ribosylation is likely to involve lysine residues on the polypeptide chain. Ribosylation of the W7FW14F apomyoglobin strongly affects its aggregation kinetics producing amyloid fibrils within few days. Cytotoxicity of the glycated aggregates has also been tested using a cell viability assay. We propose that ribosylation in the W7FW14F apomyoglobin induces the formation of a cross-link that strongly reduces the flexibility of the H helix and/or induce a conformational change that favor fibril formation. These results open new perspectives for AGEs biological role as they can be considered not only a triggering factor in amyloidosis but also a player in later stages of the aggregation process.  相似文献   

2.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The double W/F replacement renders apomyoglobin highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions. In this work we analyze the early stage of W7FW14F apomyoglobin aggregation following the time dependence of the process by far-UV CD, Fourier-transform infrared (FTIR) spectroscopy, and heme-binding properties. The results show that the aggregation of W7FW14F apomyoglobin starts from a native-like globin state able to bind the prosthetic group with spectroscopic properties similar to those observed for wild-type apoprotein. Nevertheless, it rapidly aggregates, forming amyloid fibrils. However, when the prosthetic group is added before the beginning of aggregation, amyloid fibrillization is inhibited, although the aggregation process is not prevented. Moreover, the apomyoglobin aggregates formed in these conditions are not cytotoxic differently from what is observed for all amyloidogenic proteins. These results open new insights into the relationship between the structure adopted by the protein into the aggregates and their ability to trigger the impairment of cell viability.  相似文献   

3.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues increases the susceptibility of the polypeptide chain to misfold, causing amyloid aggregation under physiological condition, i.e., neutral pH and room temperature. The role played by tryptophanyl residues in driving the folding process has been investigated by examining three mutated apomyoglobins, i.e., W7F, W14F, and the amyloid-forming mutant W7FW14F, by an integrated approach based on far-ultraviolet (UV) circular dichroism (CD) analysis, fluorescence spectroscopy, and complementary proteolysis. Particular attention has been devoted to examine the conformational and dynamic properties of the equilibrium intermediate formed at pH 4.0, since it represents the early organized structure from which the native fold originates. The results show that the W → F substitutions at position 7 and 14 differently affect the structural organization of the AGH subdomain of apomyoglobin. The combined effect of the two substitutions in the double mutant impairs the formation of native-like contacts and favors interchain interactions, leading to protein aggregation and amyloid formation.  相似文献   

4.
Myoglobin is an alpha-helical globular protein that contains two highly conserved tryptophan residues located at positions 7 and 14 in the N-terminal region of the protein. Replacement of both indole residues with phenylalanine residues, i.e. W7F/W14F, results in the expression of an unstable, not correctly folded protein that does not bind the prosthetic group. Here we report data (Congo red and thioflavine T binding assay, birefringence, and electron microscopy) showing that the double Trp/Phe replacements render apomyoglobin molecules highly susceptible to aggregation and amyloid-like fibril formation under physiological conditions in which most of the wild-type protein is in the native state. In refolding experiments, like the wild-type protein, the W7F/W14F apomyoglobin mutant formed a soluble, partially folded helical state between pH 2.0 and pH 4.0. A pH increase from 4.0 to 7.0 restored the native structure only in the case of the wild-type protein and determined aggregation of W7F/W14F. The circular dichroism spectrum recorded immediately after neutralization showed that the polypeptide consists mainly of beta-structures. In conclusion, under physiological pH conditions, some mutations that affect folding may cause protein aggregation and the formation of amyloid-like fibrils.  相似文献   

5.
Mammalian myoglobins contain two tryptophanyl residues at the invariant positions 7 (A-5) and 14 (A-12) in the N-terminal region (A helix) of the protein molecule. The crucial role of tryptophanyl residues has been investigated by site-directed mutagenesis and molecular dynamics simulation. The apomyoglobin mutants with a double W-->F substitution were found to be not correctly folded and therefore not expressed as holoprotein. The introduction of a tyrosyl residue at position 7, that is, W7YW14F, resulted in the expression of a correctly folded myoglobin. Not correctly folded apomyoglobins were found with the following mutants: W7FW14Y, W7EW14F, W7FW14E, W7KW14F, W7FW14K. Moreover, in all these cases, very low levels of expression were observed. The acid-induced denaturation curves of wild-type and folded mutant W7YW14F, obtained following the fluorescence variation of the extrinsic fluorophore 1-anilino-8-naphthalenesulfonate, revealed that the stability of the native state of mutant apoprotein is decreased, thus indicating that the replacement W-->Y in position 7 is able to restore a correct folding but not the same stability. Molecular dynamics simulation indicated that both tryptophans are involved in forming favorable, specific tertiary interactions in the native apomyoglobin structure. The lack of some of these interactions caused by tryptophanyl replacement affects the overall protein structure and may provide an explanation for the observed stability decrease. In the case of the double W-->F substitution, the simulated structure shows conclusively the domain formed by helices A, G and H to be not correctly folded. This effect is attenuated if at least one of the two residues is conserved or a tyrosyl residue replaces W7.  相似文献   

6.
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.  相似文献   

7.
The individual emission properties of the two tryptophanyl residues of sperm-whale apomyoglobin have been resolved by examining the fluorescence variations induced by denaturants, i.e., acid and guanidine, on apomyoglobin mutants W7F and W14F. The fluorescence changes have been correlated to the conformational transitions undergone by apomyoglobin on increasing denaturant concentration. The results indicate that the fluorescence decrease, observed for sperm-whale apomyoglobin on going from pH 8.0 to pH 6.0, cannot be ascribed to the formation of a charge transfer complex between a nearby histidine residue and W14 as reported in earlier papers but rather to minor structural changes affecting the microenvironments of both residues. The formation of the acidic partly folded state around pH 4.0 determines an increase of the fluorescence yield and a small red shift (5 nm) of W7 due to removal of sterically interacting K79, which is able to attenuate the emission of this residue in the native state. The fluorescence intensity of the other residue, i.e., W14, is not affected by the acidic transition. Guanidine denaturation experiments revealed an increase of fluorescence yield of W14 upon the intermediate formation, whereas the fluorescence of the other residue remained constant. The results suggest that the unfolding pathway may be different depending on the chemical nature of the denaturant used.  相似文献   

8.
Protein aggregation has been proved to be a pathological basis accounting for neuronal death caused by either transient global ischemia or oxygen glucose deprivation (OGD), and inhibition of protein aggregation is emerging as a potential strategy of preventing brain damage. Trehalose was found to inhibit protein aggregation caused by neurodegenerative diseases via induction of autophagy, whereas its effect is still elusive on ischemia-induced protein aggregation. In this study, we investigated this issue by using rat model of transient global ischemia and SH-SY5Y model of OGD. We found that pretreatment with trehalose inhibited transient global ischemia-induced neuronal death in the hippocampus CA1 neurons and OGD-induced death in SH-SY5Y cells, which was associated with inhibition of the formation of ubiquitin-labeled protein aggregates and preservation of proteasome activity. In vitro study showed that the protection of trehalose against OGD-induced cell death and protein aggregation in SH-SY5Y cells was reversed when proteasome activity was inhibited by MG-132. Further studies revealed that trehalose prevented OGD-induced reduction of proteasome activity via suppression of both oxidative stress and endoplasmic reticulum stress. Particularly, our results showed that trehalose inhibited OGD-induced autophagy. Therefore, we demonstrated that proteasome dysfunction contributed to protein aggregation caused by ischemic insults and trehalose prevented protein aggregation via preservation of proteasome activity, not via induction of autophagy.  相似文献   

9.
Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is susceptible to aggregation, which induces apoptotic cell death. The disaccharide trehalose has been reported to inhibit aggregate formation and to alleviate symptoms in cellular and animal models of Huntington disease, Alzheimer disease, and prion disease. Here, we show that trehalose can be incorporated into SH-SY5Y cells and reduces the aggregation of mutant γPKC-GFP, thereby inhibiting apoptotic cell death in SH-SY5Y cells and primary cultured Purkinje cells (PCs). Trehalose acts by directly stabilizing the conformation of mutant γPKC without affecting protein turnover. Trehalose was also found to alleviate the improper development of dendrites in PCs expressing mutant γPKC-GFP without aggregates but not in PCs with aggregates. In PCs without aggregates, trehalose improves the mobility and translocation of mutant γPKC-GFP, probably by inhibiting oligomerization and thereby alleviating the improper development of dendrites. These results suggest that trehalose counteracts various cellular dysfunctions that are triggered by mutant γPKC in both neuronal cell lines and primary cultured PCs by inhibiting oligomerization and aggregation of mutant γPKC.  相似文献   

10.
The apomyoglobin mutant W7FW14F forms amyloid-like fibrils at physiological pH. We examined the kinetics of fibrillogenesis using three techniques: the time dependence of the fluorescence emission of thioflavin T and 1-anilino-8-naphthalenesulfonate, circular dichroism measurements, and electron microscopy. We found that in the early stage of fibril formation, non-native apomyoglobin molecules containing beta-structure elements aggregate to form a nucleus. Subsequently, more molecules aggregate around the nucleus, thereby resulting in fibril elongation. We evaluated by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) the cytotoxicity of these aggregates at the early stage of fibril elongation versus mature fibrils and the wild-type protein. Similar to other amyloid-forming proteins, cell toxicity was not due to insoluble mature fibrils but rather to early pre-fibrillar aggregates. Propidium iodide uptake showed that cell toxicity is the result of altered membrane permeability. Phalloidin staining showed that membrane damage is not associated to an altered cell shape caused by changes in the cytoskeleton.  相似文献   

11.
Trehalose extends longevity in the nematode Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Trehalose is a disaccharide of glucose found in diverse organisms and is suggested to act as a stress protectant against heat, cold, desiccation, anoxia, and oxidation. Here, we demonstrate that treatment of Caenorhabditis elegans with trehalose starting from the young‐adult stage extended the mean life span by over 30% without any side effects. Surprisingly, trehalose treatment starting even from the old‐adult stage shortly thereafter retarded the age‐associated decline in survivorship and extended the remaining life span by 60%. Demographic analyses of age‐specific mortality rates revealed that trehalose extended the life span by lowering age‐independent vulnerability. Moreover, trehalose increased the reproductive span and retarded the age‐associated decrease in pharyngeal‐pumping rate and the accumulation of lipofuscin autofluorescence. Trehalose also enhanced thermotolerance and reduced polyglutamine aggregation. These results suggest that trehalose suppressed aging by counteracting internal or external stresses that disrupt protein homeostasis. On the other hand, the life span‐extending effect of trehalose was abolished in long‐lived insulin/IGF‐1‐like receptor (daf‐2) mutants. RNA interference‐mediated inactivation of the trehalose‐biosynthesis genes trehalose‐6‐phosphate synthase‐1 (tps‐1) and tps‐2, which are known to be up‐regulated in daf‐2 mutants, decreased the daf‐2 life span. These findings indicate that a reduction in insulin/IGF‐1‐like signaling extends life span, at least in part, through the aging‐suppressor function of trehalose. Trehalose may be a lead compound for potential nutraceutical intervention of the aging process.  相似文献   

12.
In a previous study we found that 30-40% dimethylsulfoxide induces the active conformation of rabbit muscle pyruvate kinase. Because dimethylsulfoxide is known to perturb structure and function of many proteins, we have explored the effect of trehalose on the kinetics of thermal inactivation and stability of pyruvate kinase; this is because trehalose, in contrast to dimethyl sulfoxide, is totally excluded from the hydration shell of proteins. The results show that 600 mM trehalose inhibits the activity of pyruvate kinase by about 20% at 25 °C, however, trehalose protects pyruvate kinase from thermal inactivation at 60 °C, increases the Tmapp of unfolding by 7.2 °C, induces a more compact state, and stabilizes its tetrameric structure. The inactivation process is irreversible due to the formation of protein aggregates. Trehalose diminishes the rate of formation of intermediates with propensity to aggregate, but does not affect the extent of aggregation. Remarkably, trehalose affects the aggregation process by inducing aggregates with amyloid-like characteristics.  相似文献   

13.
Encysted embryos of the primitive crustacean Artemia franciscana are among the most resistant of all multicellular eukaryotes to environmental stress, in part due to massive amounts of a small heat shock/alpha-crystallin protein (p26) that acts as a molecular chaperone. These embryos also contain very large amounts of the disaccharide trehalose, well known for its ability to protect macromolecules and membranes against damage due to water removal and temperature extremes. Therefore, we looked for potential interactions between trehalose and p26 in the protection of a model substrate, citrate synthase (CS), against heat denaturation and aggregation and in the restoration of activity after heating in vitro. Both trehalose and p26 decreased the aggregation and irreversible inactivation of CS at 43 degrees C. At approximate physiological concentrations (0.4 M), trehalose did not interfere with the ability of p26 to assist in the reactivation of CS after heating, but higher concentrations (0.8 M) were inhibitory. We also showed that CS and p26 interact physically during heating and that trehalose interferes with complex formation and disrupts CS-p26 complexes that form at high temperatures. We suggest from these results that trehalose may act as a "release factor," freeing folding intermediates of CS that p26 can chaperone to the native state. Trehalose and p26 can act synergistically in vitro, during and after thermal stress, suggesting that these interactions also occur in vivo.  相似文献   

14.
Biopolymer homeostasis underlies the health of organisms, and protective osmolytes have emerged as one strategy used by Nature to preserve biopolymer homeostasis. However, a great deal remains unknown about the mechanism of action of osmolytes. Trehalose, as a prominent example, stabilizes proteins against denaturation by extreme temperature and denaturants, preserves membrane integrity upon freezing or in dry conditions, inhibits polyQ-mediated protein aggregation, and suppresses the aggregation of denatured proteins. The underlying thermodynamic mechanisms of such diverse effects of trehalose remain unclear or controversial. In this study, we applied the surface-additive method developed in the Record laboratory to attack this issue. We characterized the key features of trehalose-biopolymer preferential interactions and found that trehalose has strong unfavorable interactions with aliphatic carbon and significant favorable interactions with amide/anionic oxygen. This dissection has allowed us to elucidate the diverse effects of trehalose and to identify the crucial functional group(s) responsible for its effects. With (semi)quantitative thermodynamic analysis, we discovered that 1) the unfavorable interaction of trehalose with hydrophobic surfaces is the dominant factor in its effect on protein stability, 2) the favorable interaction of trehalose with polar amides enables it to inhibit polyQ-mediated protein aggregation and the aggregation of denatured protein in general, and 3) the favorable interaction of trehalose with phosphate oxygens, together with its unfavorable interaction with aliphatic carbons, enables trehalose to preserve membrane integrity in aqueous solution. These results provide a basis for a full understanding of the role of trehalose in biopolymer homeostasis and the reason behind its evolutionary selection as an osmolyte, as well as for a better application of trehalose as a chemical chaperone.  相似文献   

15.
The solvent accessibilities to the tryptophanyl microenvironments of wild type sperm whale apomyoglobin (apoMb) and two mutants (W7F and W14F) containing a single tryptophan are measured by fluorescence quenching studies. The results are compared to those relative to horse apoMb. In the wild type sperm whale protein, no difference is noticed in the solvent accessibility of the two indole residues, as documented by the values of the Stern-Volmer constants. By contrast, the two tryptophan residues of horse apoMb are exposed to the solvent in a different way, thus indicating that some local conformational differences exist between the two homologous proteins in solution. The single W --> F substitution at either position 7 or 14 determines local conformational changes that increase the accessibility of the remaining indole residue but do not affect the overall architecture of the protein molecule.  相似文献   

16.
Effect of trehalose on protein structure   总被引:2,自引:0,他引:2  
Trehalose is a ubiquitous molecule that occurs in lower and higher life forms but not in mammals. Till about 40 years ago, trehalose was visualized as a storage molecule, aiding the release of glucose for carrying out cellular functions. This perception has now changed dramatically. The role of trehalose has expanded, and this molecule has now been implicated in a variety of situations. Trehalose is synthesized as a stress‐responsive factor when cells are exposed to environmental stresses like heat, cold, oxidation, desiccation, and so forth. When unicellular organisms are exposed to stress, they adapt by synthesizing huge amounts of trehalose, which helps them in retaining cellular integrity. This is thought to occur by prevention of denaturation of proteins by trehalose, which would otherwise degrade under stress. This explanation may be rational, since recently, trehalose has been shown to slow down the rate of polyglutamine‐mediated protein aggregation and the resultant pathogenesis by stabilizing an aggregation‐prone model protein. In recent years, trehalose has also proved useful in the cryopreservation of sperm and stem cells and in the development of a highly reliable organ preservation solution. This review aims to highlight the changing perception of the role of trehalose over the last 10 years and to propose common mechanisms that may be involved in all the myriad ways in which trehalose stabilizes protein structures. These will take into account the structure of trehalose molecule and its interactions with its environment, and the explanations will focus on the role of trehalose in preventing protein denaturation.  相似文献   

17.
Molecular dynamics simulations were carried out to model aqueous solution with different concentration of α,α-trehalose, one kind of non-reducing sugars possessing outstanding freeze-drying protective effect on biological system. The dihedral angles of the intraglycosidic linkage in trehalose were measured to estimate its structure rigidity. The dynamics and hydrogen bonding properties were studied by calculating the self-diffusion coefficient of trehalose and the distributions and lifetimes of various types of H-bonds in the solution. Through analysing the results as well as comparison with another common sugar sucrose, the freeze-drying protective mechanism of trehalose was explained at molecule level. First, trehalose is able to maintain the local structure around it as a frame due to its relatively rigid conformation. Second, the addition of trehalose restrains the water molecules from rearrangement as a result of low mobility, thus reduces the probability of freezing; trehalose has lower diffusion coefficient than water and bigger thermal diffusivity, which are favourable for vitrification. Third, the formation of H-bonds between trehalose and water and between trehalose molecules is the essence of the protective effect. Trehalose does not work via strengthening the H-bonds formed between water molecules (W–W H-bonds), instead of which it breaks the potential tetrahedral pattern of W–W H-bonds, thus suppresses the tendency of ice formation. It was also found that trehalose realises protective action better at higher concentration as far as this study is concerned.  相似文献   

18.
Turkel S 《Mikrobiologiia》2006,75(6):737-741
Trehalose and glycogen accumulate in certain yeast species when they are exposed to unfavorable growth conditions. Accumulations of these reserve carbohydrates in yeasts provide resistance to stress conditions. The results of this study indicate that certain Pichia species do not accumulate high levels of glycogen and trehalose under normal growth conditions. However, depending on the Pichia species, both saccharides accumulate at high levels when the Pichia cells are exposed to unfavorable or stress-inducing growth conditions. Growth on glycerol or methanol mostly led to trehalose accumulation in Pichia species tested in this study. It was shown that the metabolic pathways for glycogen and trehalose biosynthesis are present in Pichia species. However, it appears that the biosynthesis of trehalose and glycogen may be regulated in different manners in Pichia species than in the yeast S. cerevisiae.  相似文献   

19.
Several aquatic organisms are able to withstand extreme desiccation in at least one of their life stages. This is commonly known as "anhydrobiosis." It was often thought that to tolerate such a desiccated state required high amounts of compatible solutes such as the nonreducing disaccharide trehalose, which protects cellular structures by water replacement and glass formation. Trehalose levels of dormant eggs and cysts of five freshwater crustaceans (Daphnia magna, Daphnia pulex, Triops longicaudatus, Triops cancriformis, and Triops australiensis) were observed in different states of hydration and dehydration. Although trehalose was detected in all species, the concentration was under 0.5% of the dry weight (0.05 μg/μg protein), and no change between the different states was observed. Differential scanning calorimetry (DSC) measurements indicated that dried cysts of all Triops species were in a glassy state, supporting the vitrification hypothesis. No indication for a vitreous state was found in dried resting eggs of Daphnia.  相似文献   

20.
Many protein conformational diseases arise when proteins form alternative stable conformations, resulting in aggregation and accumulation of the protein as fibrillar deposits, or amyloids. Interestingly, numerous proteins implicated in amyloid protein formation show similar structural and functional properties. Given this similarity, we tested the notion that carboxymethylated bovine alpha-lactalbumin (1SS-alpha-lac) could serve as a general amyloid fibrillation/aggregation model system. Like most amyloid forming systems, Mg2+ ions accelerate 1SS-alpha-lac amyloid fibril formation. While osmolytes such as trimethylamine N-oxide (TMAO), and sucrose enhanced thioflavin T detected aggregation, a mixture of trehalose and TMAO substantially inhibited aggregation. Most importantly however, the flavonoid, baicalein, known to inhibit alpha-synuclein amyloid fibril formation, also inhibits 1SS-alpha-lac amyloid with the same apparent efficacy. These data suggest that the easily obtainable 1SS-alpha-lac protein can serve as a general amyloid model and that some small molecule amyloid inhibitors may function successfully with many different amyloid systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号