首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacteriophage clones which can bind with shiga toxin B subunit (StxB) and inhibit cytotoxicity of shiga toxin were obtained by using antibody capturing method from a 15-mer random peptide library displayed on the surface of bacteriophage fd. Among them, one peptide encoded by the random DNA region of a selected bacteriophage (A12) was synthesized and tested in vitro and in vivo, where the peptide competed with the receptor of shiga toxin to bind StxB, and inhibited the cytotoxicity and enterotoxicity of shiga toxin. The peptide can also block other apparently unrelated StxB binding bacteriophage (A3), which suggests that there are overlapping StxB interaction sites for those ligands with different sequences. The results provide a demonstration of bacteriophage display to screen peptide ligands for a small and/or unable biotinylated molecule by antibodies-capturing strategy, and take the lead for the development of receptor antagonists for shiga toxin.  相似文献   

2.
利用大肠杆菌鞭毛展示的随机肽库筛选TNF—α拮抗须   总被引:1,自引:0,他引:1  
TNF-α是一种在机体抗感染,抗肿瘤过程中发挥重要作用的细胞因子,其对机体具有保护和损伤两方面的作用,为了探讨新的抑制TNF-α所致炎症损伤等反应的手段,构建了细菌鞭毛递呈的随机肽库,利用构建得到的肽库,进行TNF-α特异性结合肽的筛选工作。经过5轮筛选及DNA测序,共得到6条小肽编码序列。其中2条序列中含有-V--N-WG的相同序列框架。进行6条序列与TNF-α结合力的确证后,选择了其中的4条肽序列进行人工化学合成,纯化及鉴定。利用L929细胞及MTT法对4条小肽进行活性测定,检测其对TNF-α的抑制活性。结果表明,在TNF-α对L929细胞毒性为30%左右,含同源序列框架的2条肽可抑制90%左右的TNF-α活性。  相似文献   

3.
This article attempts to review recent developments in the rapidly developing field of phage display libraries. The current state of peptide, antibody, and cDNA libraries, as well as current and future applications of phage display libraries are discussed. The main focus of the article is on the methods for selecting binding ligands against targets in a variety of different formats. These include solid phase and in-solution selection methods, and the strategies used to select for higher affinity, and binding ligands ampure and cellular target proteins.  相似文献   

4.
Paclitaxel (Taxol), an effective anticancer agent, is known to bind to tubulin and induce tubulin polymerization. Several other binding proteins of paclitaxel, such as Bcl-2, heat shock proteins, and NSC-1, have also been reported. Here, we describe a T7 phage-based display to screen for paclitaxel-binding molecules from a random peptide library using paclitaxel-photoimmobilized TentaGel resin. Specific phage particles that bind the paclitaxel-immobilized resin were obtained. Among them, two phage clones included the same consensus amino acid sequence (KACGRTRVTS). Analysis of the protein database using BLAST revealed that a portion of this sequence is conserved in the zinc finger domain of human NFX1. Binding affinity of paclitaxel against the partial recombinant protein of NFX1 (424aa-876aa) was confirmed by pull-down assays and surface plasmon resonance analyses.  相似文献   

5.
Peptide libraries displayed by filamentous bacteriophage have proven a powerful tool for the discovery of novel peptide agonists, antagonists and epitope mimics. Most phage-displayed peptides are fused to the N terminus of either the minor coat protein, pIII, or the major coat protein, pVIII. We report here that peptides containing cysteine residues, displayed as N-terminal fusions to pVIII, can form disulfide-bridged homodimers on the phage coat. Phage clones were randomly selected from libraries containing one or two fixed Cys residues, and surveyed for the presence of peptide-pVIII homodimers by SDS-PAGE analysis that involved pretreatment of the phage with reducing or thiol-modifying agents. For all phage whose recombinant peptide contained a single Cys residue, a significant fraction of the peptide-pVIII molecules were displayed as dimers on the phage coat. The dimeric form was in greater abundance than the monomer in almost all cases in which both forms could be reliably observed. Occasionally, peptides containing two Cys residues also formed dimers. These results indicate that, for a given pVIII-displayed peptide bearing a single Cys residue, a significant fraction of the peptide (>40 %) will dimerize regardless of its sequence; however, sequence constraints probably determine whether all of the peptide will dimerize. Similarly, only occasionally do peptides bearing two Cys residues form intermolecular disulfide bridges instead of intramolecular ones; this indicates that sequence constraints may also determine dimerization versus cyclization. Sucrose-gradient analysis of membranes from cells expressing pVIII fused to a peptide containing a single Cys residue showed that dimeric pVIII is present in the cell prior to its assembly onto phage. A model of the peptide-pVIII homodimer is discussed in light of existing models of the structure and assembly of the phage coat. The unique secondary structures created by the covalent association of peptides on the phage surface suggest a role for homo- and heterodimeric peptide libraries as novel sources of bioactive peptides.  相似文献   

6.
We have designed novel short peptides expressing both antimicrobial and Shiga-toxin (Stx) neutralization activities by combining nuclear localization signal (NLS) peptides (RIRKKLR, PKKKRKV, and PRRRK) tandemly with globotriaoside (Gb3) mimic peptide (WHWTWL). These fusion peptides exhibited excellent antimicrobial activity against both gram-positive and gram-negative bacteria. A peptide WHWTWLRIRKKLR (Trp-His-Trp-Thr-Trp-Leu-Arg-Ile-Arg-Lys-Lys-Leu-Arg), especially, exhibited about 100 times higher activity than the original NLS peptide. SPR analysis demonstrated that the binding of this peptide to both Stxs was strong: K(d) = 6.6 x 10(-6) to Stx-1 and 6.8 x 10(-6) to Stx-2. The in vitro assay against Stx-1 using HeLa cells showed that this peptide increased the survival rate of HeLa cells against the infection of Stx-1. The peptide has been found to maintain high antimicrobial activity, Stx neutralization activity, and no cytotoxicity at its concentration of 7.8-31.3 microg/mL (4.2-16.7 microM). The present peptide design has a prospect of developing potent multifunctional drugs to destroy proteinaceous toxin-producing bacteria and to simultaneously neutralize the toxins released by bacteriolysis.  相似文献   

7.
8.
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium.  相似文献   

9.
Large collections of random peptides can be expressed on the N-terminus of the pIII protein of filamentous phage and screened for binding to antibodies and other receptors. In our previous work with a monoclonal antibody (3E7) (Cwirla et al., Proc. Natl. Acad. Sci. USA 87, 6378-6382, 1990), we showed that a high proportion of the selected peptides had relatively low affinity (Kd's greater than 1 microM). Here we describe conditions for selective enrichment of phage expressing high affinity peptides. This is done by allowing the phage to interact with a low concentration of 3E7 Fab followed by extensive washing to allow dissociation of phage-bearing peptides with low affinity. These affinity selection conditions were applied to the pool of phage previously selected using a high concentration of IgG. A phage clone with the known high affinity ligand YGGFL (Kd 7.1 nM) and several other closely related peptides were isolated. The dissociation rate of 125I-3E7 Fab from several phage clones approximated that of phage expressing YGGFL. A good correlation was found between the dissociation rate of the peptides found on phage and the equilibrium binding constants of chemically synthesized peptides. The strategy of using a low concentration of receptor and extensive washing to select phage-bearing high affinity peptides, combined with assays to determine the specificity and relative affinity of peptides on isolated phage clones, should be generally applicable in using the peptides-on-phage system for discovery of high affinity receptor ligands.  相似文献   

10.
Understanding receptor-ligand interactions, and the signal transduction pathways they activate, is of great interest for the discovery of novel antagonists and agonists. In this report we describe a rapid and efficient procedure to evaluate the importance of several different epidermal growth factor (EGF) residues for the binding and activation of its receptor (EGFR). We constructed an EGF mutant library randomized at positions 13, 15 and 16 and expressed them on filamentous phages. Phage display is a powerful system, allowing rapid isolation of binding mutants. Since many of the most pharmacologically interesting receptors cannot be produced in a soluble form, we developed a technique to rapidly select receptor-binding molecules directly on cells. A luciferase assay, simple to perform, was then used to test their biological transduction activity and to rapidly detect mutants of interest. Analysis of the resulting sequences revealed that the wild-type amino acids at positions 13, 15 and 16 are optimized for binding and activity. EGF mutants with agonist properties were also isolated and tolerated substitutions were identified.  相似文献   

11.
The development of a whole new class of industrial agents, such as biologically based nanomaterials and viral vectors, has raised many challenges for their large-scale manufacture, principally due to the lack of essential physical data and bioprocessing knowledge. A new example is the promise of filamentous bacteriophages and their derivatives. As a result, there is now an increasing need for the establishment of strong biochemical engineering foundations to serve as a guide for future manufacture. This article investigates the effect of high-energy fluid flow on filamentous bacteriophage M13 to determine its robustness for large-scale processing. By the application of well-understood ultra scale-down predictive techniques, the viability of bacteriophage M13 was studied as a measure of its robustness and as a function of energy dissipation rate and fluid conditions. These experiments suggested that despite being perceived as a relatively fragile molecule in the literature, bacteriophage M13 should tolerate processing conditions in existing large-scale equipment designs. No loss of viability was noted up to a maximum energy dissipation rate of 2.9 × 10(6) W kg(-1) . Furthermore, significant losses above this threshold only occurred over periods well in excess of the exposure times expected in a bioprocess environment. Filamentous bacteriophages may therefore be regarded as a viable process material for industrial applications.  相似文献   

12.
A monoclonal antibody, 5-5B, which neutralizes Shiga toxin 1 (Stx1) cytotoxicity of Escherichia coli, was constructed. An epitope analysis indicated that Asn55 in Stx1 B subunit was an important residue. This result and our previous results using an anti-Stx2 monoclonal antibody indicate that the region around the cysteine residue of the disulfide bond might be important for the neutralization of Stx cytotoxicity, making it a potential vaccination candidate.  相似文献   

13.
The foreign insert intended to be displayed via recombinant phage proteins can have a negative effect on protein expression and phage assembly. A typical example is the case of display of peptides longer than 6 amino acid residues on the major coat protein, protein VIII of the filamentous bacteriophages M13 and fd. A solution to this problem has been the use of "two-gene systems" generating chimeric phages that concomitantly express wild-type protein VIII along with recombinant protein VIII. Although the two-gene systems are much more permissive in regard to insert length and composition, some cases can still adversely affect phage assembly. Although these phages genotypically contain the desired DNA of the insert, they appear to be phenotypically wild type. To avoid false-negative results when using chimeric phages in binding studies, it is necessary to confirm that the observed lack of phage recognition is not due to faulty assembly and display of the intended insert. Here we describe a strategy for generating antibodies that specifically recognize recombinant protein VIII regardless of the nature of its foreign insert. These antibodies can be used as a general monitor of the display of recombinant protein VIII into phage particles.  相似文献   

14.
Angiotensin I converting enzyme (ACE)-inhibitory peptides were screened from a random peptide-displayed phage library using ACE-coupled liposomes. Among four kinds of inhibitory peptides selected by biopanning with two different elution strategies, a peptide (LSTLRSFCA) showed the highest inhibitory activity with an IC(50) value of 3microM. By measuring inhibitory activities of fragments of the peptide, it was found that the RSFCA region was a functional site to inhibit strongly the ACE catalytic activity, and particularly both Arg and Cys residues were essential for the strong inhibitory activity. The inhibitory activity of RRFCA was slightly increased, while that of the RSFRA, in which the Cys residue was replaced by Arg, was decreased to greater extent in comparison with the inhibitory activity of RSFCA. Taking into account the results obtained from the SPOT analysis, it was suggested that the Arg and Phe residues in RSFCA were important for a specific interaction with ACE, and the Cys residue inhibited the ACE activity. The cystein-based ACE-inhibitory peptides have not been isolated from processed food materials. These findings suggested that the biopanning method utilizing protein-coupled liposomes and random peptide libraries might have a possibility to screen new functional peptides that are not found in processed food materials.  相似文献   

15.
Stx bacteriophages in 68 samples of beef and salad were quantified by real-time quantitative PCR (qPCR). Stx phages from the samples were propagated in Escherichia coli C600, E. coli O157:H7, and Shigella strains and further quantified. Fifty percent of the samples carried infectious Stx phages that were isolated from plaques generated by lysis.  相似文献   

16.
Determining the critical structural features a ligand must possess in order to bind to its receptor is of key importance to the understanding of vital biological processes and to the rational design of small molecule therapeutics to modulate receptor function. We have developed a general strategy for determining such ligand binding motifs using low temperature NMR structures of peptides with the desired receptor binding properties. This approach has been successfully applied to determine a binding motif for the chemokine receptor CXCR4. The motif identified provides a detailed guide for the design of small molecule antagonists against CXCR4, which are much sought after to aid in the treatment of a number of conditions including human immunodeficiency virus type 1 infection and a variety of cancers.  相似文献   

17.
Filamentous bacteriophages and their derivatives are showing great promise as a whole new class of industrial agents, such as biologically based nano-materials and viral vectors. This raises challenges for their large-scale manufacture, principally due to the lack of bioprocessing knowledge. This article addresses what will be a potentially important option in the primary purification of the bacteriophages. Polyethylene glycol (PEG)-salt dual precipitants, calcium ions, spermidine, and isoelectric precipitation were first examined for their potential suitability for bacteriophage concentration under both pure and broth conditions. Successful precipitants were further studied on the basis of their selective purification ability from DNA and protein contaminants in a clarified broth system. Both PEG-based and isoelectric precipitations resulted in bacteriophage purity improvements, and PEG-based precipitations offered the highest selectivities. This work shows that precipitation of bacteriophages can be an effective primary purification step in a large-scale bioprocess.  相似文献   

18.
19.
20.
The manner by which peptidic ligands bind and activate their corresponding G-protein-coupled receptors is not well understood. One of the better characterized peptidic ligands is the chemotactic cytokine complement factor 5a (C5a), a 74-amino acid helical bundle. Previous studies showed 6-mer peptide analogs derived from the C terminus of the C5a ligand can bind to C5aR (Kd values approximately 0.1-1 microm) and either agonize or antagonize the receptor (Gerber, B. O., Meng, E. C., Dotsch, V., Baranski, T. J., and Bourne, H. R. (2001) J. Biol. Chem. 276, 3394-3400). Here, we provide direct biochemical data using disulfide trapping to support a model that these peptides bind within a transmembrane helical triad formed by alpha-helices III, VI, and VII. We show that the three amino acids on the C terminus of the peptide analogs bind too weakly to exert a functional effect themselves. However, when a cysteine residue is placed on their N terminus they can be trapped by disulfide interchange to specific cysteines in helix III and VI and not to other cysteines, engineered into the C5aR. The trapped peptides function as agonists or partial antagonists, similar to the non-covalent parents from which they were derived. These data help to further refine the binding mode for C5a to the C5aR and suggest an approach and a binding site that may be applicable to studying other peptide binding receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号