首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200pos cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up‐regulated in CD200pos cells compared to CD200neg fraction. At the functional level, CD200pos cells were prone to mineralize the extra‐cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200pos cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down‐regulated. As dexamethasone has anti‐inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro‐inflammatory cytokines interleukin‐1β and tumour necrosis factor‐α increased CD200 membrane expression but down‐regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro‐inflammatory or pro‐osteogenic, CD200 expression was down‐regulated when nuclear‐factor (NF)‐κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro‐inflammatory cytokines through the same pathway: NF‐κB.  相似文献   

2.
Mesenchymal stem cells (MSCs) constitute an interesting cellular source to promote brain regeneration after Parkinson’s disease. MSCs have significant advantages over other stem cell types, and greater potential for immediate clinical application. The aim of this study was to investigate whether MSCs from the human placenta could be induced to differentiate into dopaminergic cells. MSCs from the human placenta were isolated by digestion and density gradient fractionation, and their cell surface glycoproteins were analyzed by flow cytometry. These MSCs were cultured under conditions promoting differetiation into adipocytes and osteoblasts. Using a cocktail that includes basic fibroblast growth factor (bFGF), all trans retinoic acid (RA), ascorbic acid (AA) and 3-isobutyl-1-methylxanthine (IBMX), the MSCs were induced in vitro to become dopamine (DA) neurons. Then, the expression of the mRNA for the Nestin and tyrosine hydroxylase (TH) genes was assayed via RT-PCR. The expression of the Nestin, dopamine transporter (DAT), neuronal nuclear protein (NeuN) and TH proteins was determined via immunofluorescence. The synthesized and secreted DA was determined via ELISA. We found that MSCs from the human placenta exhibited a fibroblastoid morphology. Flow cytometric analyses showed that the MSCs were positive for CD44 and CD29, and negative for CD34, CD45, CD106 and HLA-DR. Moreover, they could be induced into adipocytes and osteocytes. When the MSCs were induced with bFGF, RA, AA and IBMX, they showed a change in morphology to that of neuronal-like cells. The induced cells expressed Nestin and TH mRNA, and the Nestin, DAT, NeuN and TH proteins, and synthesized and secreted DA. Our results suggest that MSCs from the human placenta have the ability to differentiate into dopaminergic cells.  相似文献   

3.
4.
Adipose tissue seems to be a rich and safe source of mesenchymal stem cells (MSCs). The present study was aimed to investigate the biological and morphological characteristics of human adipose tissue-derived stem cells (ATSCs). Light and transmission electron microscopy were used. Course of proliferation was analyzed by growth curve. Expression of surface antigens was assessed by flow cytometry. Chondrogenic potential was assessed by immunohistochemistry. Obtained results showed morphology typical of fibroblastoid cells. TEM analysis proved ultrastructural morphology similar to MSCs from other sources. ATSCs reflected their proteosynthetic and metabolic activity. Each cell had irregular shape of nucleus with noticeable nucleoli. Abundant cisterns of rough endoplasmic reticulum were present in their cytoplasm. Karyotype mapping showed normal count of human chromosomes (46,XX). The growth curve revealed high capability for proliferation and population doubling time was 27.36 hours. ATSCs were positive for CD13, CD29, CD44, CD73, CD90, CD105 and CD106, but did not express CD14, CD34, CD45 and HLA-DR. It was also proved that ATSCs underwent chondrogenic differentiation in vitro. On the basis of obtained results it should be emphasized that ATSCs are typical MSCs and after further investigations they may be used in tissue engineering and regenerative medicine.  相似文献   

5.
Liu G  Shu C  Cui L  Liu W  Cao Y 《Cryobiology》2008,56(3):209-215
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone.  相似文献   

6.
Background aimsMesenchymal stromal cells (MSCs) are pluripotent cells that have immunosuppressive and reparative properties in vitro and in vivo. Although autologous bone marrow (BM)-derived MSCs are already clinically tested in transplant recipients, it is unclear whether these BM cells are affected by renal disease. We assessed whether renal failure affected the function and therapeutic potential of BM-MSCs.MethodsMSCs from 10 adults with end-stage renal disease (ESRD) and 10 age-matched healthy controls were expanded from BM aspirates and tested for phenotype and functionality in vitro.ResultsMSCs from ESRD patients were >90% positive for CD73, CD90 and CD105 and negative for CD34 and CD45 and showed a similar morphology and differentiation capacity as MSCs from healthy controls. Of importance for their clinical utility, growth characteristics were similar in both groups, and sufficient numbers of MSCs were obtained within 4 weeks. Messenger RNA expression levels of self-renewal genes and factors involved in repair and inflammation were also comparable between both groups. Likewise, microRNA expression profiling showed a broad overlap between ESRD and healthy donor MSCs. ESRD MSCs displayed the same immunosuppressive capacities as healthy control MSCs, demonstrated by a similar dose-dependent inhibition of peripheral blood mononuclear cell proliferation, similar inhibition of proinflammatory cytokines tumor necrosis factor-α and interferon-γ production and a concomitant increase in the production of interleukin-10.ConclusionsExpanded BM-MSCs procured from ESRD patients and healthy controls are both phenotypically and functionally similar. These findings are important for the potential autologous clinical application of BM-MSCs in transplant recipients.  相似文献   

7.
The effects of microgravity that were simulated using clinoritation and cell exposure in a Random Positioning Machine (RPM; Dutch Space, Netherlands) on the production of interleukins by mesenchymal stromal cells (MSCs) of the human bone marrow were studied. Additionally, interleukins production was studied in osteogenic derivatives of MSCs induced by growth factors, such as 10−8 M dexamethasone, 0.2 mM ascorbic acid, and 10 mM β-glycerolphosphate. Twenty-day clinoritation resulted in an increase in the interleukin-8 (IL-8) level by a factor of 1.4–3.2 in the culture medium of MSCs and their osteogenic derivatives. Exposure of cells to RPM was followed by an increase in IL-8 production by factors of 1.5–6 and 1.6–2.1 after 10 and 20 days of the treatment, respectively. MSCs and their osteogenic derivatives exhibited a tendency towards a decrease in the release of IL-6 into the culture medium after simulation of microgravity with RPM. Thus, in different models, microgravity modified production of interleukins in MSCs and mature cells with the osteogenic phenotype.  相似文献   

8.
Intracellular reactive oxygen species (ROS) play important roles in the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). In this study, the effects of resveratrol (RES), on the ex vivo expansion of HSPCs were investigated by analyzing CD34+ cells expansion and biological functions, with the objective to optimize ex vivo culture conditions for CD34 + cells. Among the five tested doses (0, 0.1, 1, 10, 20, and 50 μM), 10 μM RES was demonstrated to be the most favorable for ex vivo CD34 + cells expansion. In the primary cultures, 10 μM RES favored higher expansion folds of CD34 + cells, CD34 +CD38 cells, and colony-forming units (CFUs) ( P < 0.05). It was found that the percentages of primitive HSPCs (CD34 +CD38 CD45R CD49f +CD90 + cells) in 10 μM RES cultures were higher than those without RES. Further, in the secondary cultures, expanded CD34 + cells derived from primary cultures with 10 μM RES exhibited significantly higher total cells and CD34 + cells expansion ( P < 0.05). In the semisolid cultures, the frequency of CFU-GM and total CFUs of 10 μM RES group were both higher than those of without RES group, demonstrating that CD34 + cells expanded with 10 μM RES possessed better biological function. Furthermore, the addition of 10 μM RES downregulated the intracellular ROS level via strengthening the scavenging capability of ROS, and meanwhile reducing the percentages of apoptotic cells in cultures. Collectively, RES could stimulate the ex vivo expansion of CD34 + cells, preserved more primitive HSPCs and maintain better biological function by alleviating intracellular ROS level and cell apoptosis in cultures.  相似文献   

9.
10.
The long‐term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin?Sca‐1+ CD49f+ Trop2high‐phenotype) and human (Lin? CD49f+ TROP2high) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti‐human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single‐cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f+/TROP2high phenotype of basal prostate progenitor cells and characterized by in vivo sandwich‐transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9+/CD24+/CD29+/CD44+/CD47+/CD49f+/CD104+/CD147+/CD326+/Trop2high of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan‐1 and stage‐specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f+ TROP2+ basal prostate progenitor cells. Transplantation experiments suggest that CD49f+ TROP2high SSEA‐4high human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f+ TROP2high or CD49f+ TROP2high SSEA‐4low cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA‐4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage.  相似文献   

11.
The conventional enzymatic method is widely used for mesenchymal stem cells (MSCs) isolation from adipose tissue. The method holds major drawbacks; it is costly, time-consuming and results in a heterogeneous cell population. Besides, digestion of extracellular matrix causes cell injury and compromise proliferation and differentiation of the cells. Also, because of over handling the samples are also prone to contamination. Here, we introduce a non-enzymatic method for MSCs isolation without disturbing the cells habitat. Small pieces of adipose tissue obtained from animal or human liposuction were explanted into a culture flask, immobilized by fetal bovine serum (FBS) and incubated overnight. The explants were then irrigated with DMEM containing FBS. Within few days, the fibroblast-like cells migrated from the tissue and proliferated rapidly. When subconfluent, the cells were harvested, expanded through 3 passages and used for immunophenotyping and differentiation assays. As judged by flow cytometric analysis of surface markers (CD44+, CD105+, CD34, CD45), Oil Red O and Alizarin Red staining, the MSCs isolated by our non-enzymatic method were pluripotent and exhibited the potential for differentiation into adipocyte and osteoblast. Great isolation yields, homogeneity of isolated cells, brief procedure, and high economy are the advantages of our method over the conventional protocol.  相似文献   

12.
Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20–30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB‐MSC‐like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 × 106 cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL‐3, and 5 ng/mL Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF). Moreover, the UCB‐MSC‐like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens‐DR (HLA‐DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB‐MSCs by adding suitable cytokines into the culture system. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

13.
14.
AIM: To establish an easily-handled method to isolate mesenchymal stem cells (MSCs) from coagulated human bone marrow samples.METHODS: Thrombin was added to aliquots of seven heparinized human bone marrow samples to mimic marrow coagulation. The clots were untreated, treated with urokinase or mechanically cut into pieces before culture for MSCs. The un-coagulated samples and the clots were also stored at 4 °C for 8 or 16 h before the treatment. The numbers of colony-forming unit-fibroblast (CFU-F) in the different samples were determined. The adherent cells from different groups were passaged and their surface profile was analyzed with flow cytometry. Their capacities of in vitro osteogenesis and adipogenesis were observed after the cells were exposed to specific inductive agents.RESULTS: The average CFU-F number of urokinase-treated samples (16.85 ± 11.77/106) was comparable to that of un-coagulated control samples (20.22 ± 10.65/106, P = 0.293), which was significantly higher than those of mechanically-cut clots (6.5 ± 5.32/106, P < 0.01) and untreated clots (1.95 ± 1.86/106, P < 0.01). The CFU-F numbers decreased after samples were stored, but those of control and urokinase-treated clots remained higher than the other two groups. Consistently, the numbers of the attached cells at passage 0 were higher in control and urokinase-treated clots than those of mechanically-cut clots and untreated clots. The attached cells were fibroblast-like in morphology and homogenously positive for CD44, CD73 and CD90, and negative for CD31 and CD45. Also, they could be induced to differentiate into osteoblasts and adipocytes in vitro.CONCLUSION: Urokinase pretreatment is an optimal strategy to isolate MSCs from human bone marrow samples that are poorly aspirated and clotted.  相似文献   

15.
16.
17.
Stem cells are cells specialized cell, capable of renewing themselves through cell division and can differentiate into multi-lineage cells. These cells are categorized as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells. Mesenchymal stem cells (MSCs) are adult stem cells which can be isolated from human and animal sources. Human MSCs (hMSCs) are the non-haematopoietic, multipotent stem cells with the capacity to differentiate into mesodermal lineage such as osteocytes, adipocytes and chondrocytes as well ectodermal (neurocytes) and endodermal lineages (hepatocytes). MSCs express cell surface markers like cluster of differentiation (CD)29, CD44, CD73, CD90, CD105 and lack the expression of CD14, CD34, CD45 and HLA (human leucocyte antigen)-DR. hMSCs for the first time were reported in the bone marrow and till now they have been isolated from various tissues, including adipose tissue, amniotic fluid, endometrium, dental tissues, umbilical cord and Wharton''s jelly which harbours potential MSCs. hMSCs have been cultured long-term in specific media without any severe abnormalities. Furthermore, MSCs have immunomodulatory features, secrete cytokines and immune-receptors which regulate the microenvironment in the host tissue. Multilineage potential, immunomodulation and secretion of anti-inflammatory molecules makes MSCs an effective tool in the treatment of chronic diseases. In the present review, we have highlighted recent research findings in the area of hMSCs sources, expression of cell surface markers, long-term in vitro culturing, in vitro differentiation potential, immunomodulatory features, its homing capacity, banking and cryopreservation, its application in the treatment of chronic diseases and its use in clinical trials.  相似文献   

18.
Background aimsHuman multipotent mesenchymal stromal cells (hMSC) have become one of the main interests in regenerative medicine because of their ability to differentiate into different lineages. Human amniotic fluid is reported to contain MSC (hAMSC) and therefore may be a useful source of cells for clinical applications. However, our understanding of the behavior of these cells in indefinite in vitro culture conditions is very limited.MethodsWe systematically evaluated and characterized, throughout their whole lifespan, the expansion potential, chromosomal stability, surface and intracellular phenotype and differentiation potential of fibroblastoid hAMSC (F-type hAMSC).ResultsNine F-type hAMSC cultures could be expanded in in vitro culture conditions for 223.25 ± 24.44 days (mean ± SD), during which time 28.96 ± 1.5 passages were made giving rise to 54.95 ± 3.17 population doublings (PD) and an estimated number of accumulated cells of between 1.0 × 1022 and 9.7 × 1023, with no visible alterations in the chromosome during their lifespan. All the cultures showed unchanged percentages of strongly positive expressions of the surface markers CD29, CD44, CD73, CD90, CD95, CD105 and HLA-ABC, as well as the embryonic intracellular markers Nanog and Sox2, during their lifespan, whereas the expression of the embryonic surface markers SSEA3, SSEA4, TRA-1-60 and TRA-1-81 fell until it disappeared with progression of the culture. These cells retained their differentiation capacities to adipogenic, chondrogenic and osteogenic lineages throughout their lifespan.ConclusionsF-type hAMSC exhibit reproducible biologic characteristics, confirming that these cells are ideal candidates for use in regenerative medicine.  相似文献   

19.
Background information. Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony‐forming ability and differentiation potential of four human cell types in vitro: commercially available skin‐derived fibroblasts [hSDFs (human skin‐derived fibroblasts)], adipose tissue‐derived stem cells [hASCs (human adipose tissue‐derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. Results. hSDFs, hASCs and WI38 exhibited a similar spindle‐like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell‐associated gene expressions by performing real‐time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5‐fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell‐derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. Conclusions. These findings suggest that (i) so‐called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony‐forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.  相似文献   

20.
赵迪诚  杜鹃  陈红  卢连梅  苏江 《生物磁学》2011,(24):4837-4840
目的:研究脐血间充质干细胞生物学特性及向神经元样细胞分化的潜能。方法:采用密度梯度离心结合贴壁培养法自脐血中分离间充质干细胞,观察细胞生长情况,描绘生长曲线,流式细胞仪检测细胞表面标志物,分别向成骨细胞、脂肪细胞、神经元样细胞进行诱导分化,通过茜素红染色、油红O染色检测脐血间充质干细胞成骨、成脂肪细胞诱导分化能力,而以免疫组织化学检测诱导后细胞表面神经标志物的表达。结果:纯化的脐血间充质干细胞贴壁生长,呈均一梭形,生长曲线呈S型,并以P3代增殖能力最强,细胞表面不表达或弱表达CD34、CD35、CD106,高表达CD29、CD44、CD105。成骨诱导2周后,可检测到钙化基质的形成,成脂肪诱导3周后,可检测到脂滴的形成。向神经元样细胞诱导分化后,可观察到典型的神经元样形态改变,且NSE、NF、GFAP阳性表达。结论:分离纯化的脐血间充质干细胞具有较强的增殖能力与分化潜能,并在体外诱导条件下可以向神经元样细胞定向分化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号