首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directed cell migration in tissues mediates various physiological processes and is guided by complex cellular factors such as chemoattractant gradients and electric fields. Direct current (DC) electric fields can be generated in physiological settings and the electric field guided migration of various cell types (i.e., electrotaxis) has been demonstrated both in vitro and in vivo. Although several mechanisms have been proposed for electrotaxis, there are so far very few quantitative models. Furthermore, because chemoattractant gradients and electric fields co-exist in tissues, it is important to understand how chemotaxis and electrotaxis interact for mediating cell migration and trafficking. In this study, we developed a mathematical model to investigate the role of electromigration of cell surface chemoattractant receptors in mediating electrochemical sensing and migration of cells. Our results show that electromigration of chemoattractant receptors enables cell electrotactic sensing and migration in the presence of a uniform chemoattractant field. Furthermore, in the physiologically-relevant range of receptor electromigration rates, application of electric fields overcomes chemical guiding signals for directional sensing and migration of cells in co-existing competing electric fields and chemoattractant gradients.  相似文献   

2.
3.
We consider the possibility that DC magnetic fields can interact in a resonant manner with endogenous AC electric fields in biological systems. Intrinsic electric-field ion cyclotron resonance (ICR) interactions would be more physically credible than models based on external AC magnetic fields and might be expected as an evolutionary response to the long-term constancy of the geomagnetic field. Bioelectromagnetics 17:85–87, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Glioblastoma multiforme (GBM) is a malignant brain cancer that causes high mortality in patients. GBM responds weakly to the common cancer treatments such as chemotherapy and radiotherapy and even surgery. Carboplatin is an alkylating agent widely used to treat cancer. However, resistance to this drug is a common problem in its use in cancer treatment. Concomitant exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) and carboplatin is one unexplored possibility for overcoming this resistance. Indeed, many lines of evidence show that EMF affects cancer cells and drug action. In this study, we evaluated the effect of concomitant administration of carboplatin and EMF (50 Hz, 70 G) and also concomitant administration of carboplatin and static magnetic field (SMF) (70 G) on human glioma cell line (U-87). The results showed that cotreatment reduced the efficiency of carboplatin in U-87 cells, by decreasing caspase-3 in comparison to drug groups. Overall, EMF reduced the apoptotic effect of carboplatin, possibly through a redox regulation mechanism. Therefore, we have to avoid coadministration of magnetic field (MF) and carboplatin in tumor area, because the MF decreased the toxicity of the drug. However, further studies are needed to reveal the action mechanism of this combination therapeutic method.  相似文献   

6.
Recent experiments have revealed that Ca2+ -calmodulin dependent myosin light chain phosphorylation in a cell-free preparation exhibits unexpectedly high sensitivity to weak magnetic fields. This enzyme system is a well-studied biochemical system, which appears to depend upon ion binding. A previous article in this journal discussed the theoretical background of myosin phosphorylation and the ion-dependent interactions of EMF with soft tissues. Because of the electromagnetic field (EMF) sensitivity of this cell-free system, experiments were designed to test the effect of a pulsed radio frequency (PRF) field, pulsating magnetic fields (TEMF), gradient magnetic fields (Magnabloc), and homogeneous static magnetic fields (in Helmholtz arrangement) designed for clinical application. It is concluded that these various magnetic fields affect this cell-free enzyme system by modulating ion–protein interactions.  相似文献   

7.
Experimental data on calcium-ion release in chicken brain tissue suggest that biological effects of electric and magnetic fields (EMFs) are concentrated near certain “active combinations” of DC magnetic field strength and “effective” AC magnetic field frequencies. We hypothesize that active AC/DC combinations may exist and suggest that epidemiologic data, coupled with DC magnetic field measurements, may be used to identify critical exposure conditions. An empirical model is used to calculate these multiple active combinations at any given DC magnetic field strength and to define a rating system that incorporates the proximity of AC magnetic field frequencies generated by electric power lines to the new, computed effective frequencies. Such an exposure score may be useful in investigating correlations of EMF exposure with disease incidence. For 60 Hz and 50 Hz, the highest EMF exposure scores occurred at DC field strengths of 506 mG and 422 mG, respectively. The exposure score contains a factor which may be adjusted to reflect the importance of harmonics of the AC magnetic field as well as of the fundamental frequency. Using this factor, we consider two important special cases consistent with chick brain data: 1) we consider active pairs associated with all detectable harmonics (up to 660 Hz) without regard to relative intensity of the harmonics, and 2) we use the relative intensities of the AC field frequencies to adjust their contribution to the exposure score. © 1993 Wiley-Liss. Inc.  相似文献   

8.
There is a large body of experimental data demonstrating various effects of magnetic field (MF) on plants growth and development. Although the mechanism(s) of perception of MF by plants is not yet elucidated, there is a possibility that like other stimuli, MF exerts its effects on plants by changing membrane integrity and conductance of its water channels, thereby influencing growth characteristics. In this study, the seeds of wheat (Triticum aestivum L. cv. Kavir) were imbibed in water overnight and then treated with or without a 30-mT static magnetic field (SMF) and a 10-kHz electromagnetic field (EMF) for 4 days, each 5 h. Water uptake of seeds reduced 5 h of the treatment with EMF but did not show changes in SMF treatment. Exposure to both magnetic fields did not affect germination percent of the seeds but increased the speed of germination, compared to the control group. Treatment with EMF significantly reduced seedling length and subsequently vigor index I, while SMF had no effects on these parameters. Both treatments significantly increased vigor index II, compared to the control group. These treatments also remarkably increased catalase activity and proline contents of seedlings but reduced the activity of peroxidase, the rate of lipid peroxidation and electrolyte leakages of membranes. The results suggest promotional effects of EMFs on membrane integrity and growth characteristics of wheat seedlings.  相似文献   

9.
We have previously reported that exposing the vegetative plasmodia stage of Physarum polycephalum to either individual or simultaneously applied electric and magnetic fields (45-75 Hz, 0.14-2.0 G, and 0.035-0.7 V/m) lengthens their mitotic cycle, depresses their rate of reversible shuttle streaming, and lowers their respiration rate. In this article we report the effects of simultaneously applied electromagnetic fields (60 Hz, 1.0 G, 1.0 V/m), electric fields only (60 Hz, 1.0 V/m), magnetic fields only (60 Hz, 1.0 G) on the haploid amoeba of Physarum exposed for 120-180 days. Statistically significant depressions (about 8-11%) in ATP levels were observed with all field conditions; however, respiration was significantly decreased only when amoebae were subjected to either combined fields or electric fields alone. Magnetic fields alone failed to induce a significant decrease in respiration.  相似文献   

10.
11.
Directed cell migration and adhesion is essential to embryonic development, tissue formation and wound healing. For decades it has been reported that electric field (EF), magnetic field (MF) and electromagnetic field (EMF) can play important roles in determining cell differentiation, migration, adhesion, and evenwound healing. Combinations of these techniques have revealed new and exciting explanations for how cells move and adhere to surfaces; how the migration of multiple cells are coordinated and regulated; how cellsinteract with neighboring cells, and also to changes in their microenvironment. In some cells, speed and direction are voltage dependent. Data suggests that the use of EF, MF and EMF could advance techniques in regenerative medicine, tissue engineering and wound healing. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:5–16, 2017  相似文献   

12.
We present a hypothesis that the risk of childhood leukemia is related to exposure to specific combinations of static and extremely-low-frequency (ELF) magnetic fields. Laboratory data from calcium efflux and diatom mobility experiments were used with the gyromagnetic equation to predict combinations of 60 Hz and static magnetic fields hypothesized to enhance leukemia risk. The laboratory data predicted 19 bands of the static field magnitude with a bandwidth of 9.1 μT that, together with 60 Hz magnetic fields, are expected to have biological activity. We then assessed the association between this exposure metric and childhood leukemia using data from a case-control study in Los Angeles County. ELF and static magnetic fields were measured in the bedrooms of 124 cases determined from a tumor registry and 99 controls drawn from friends and random digit dialing. Among these subjects, 26 cases and 20 controls were exposed to static magnetic fields lying in the predicted bands of biological activity centered at 38.0 μT and 50.6 μT. Although no association was found for childhood leukemia in relation to measured ELF or static magnetic fields alone, an increasing trend of leukemia risk with measured ELF fields was found for subjects within these static field bands (P for trend = 0.041). The odds ratio (OR) was 3.3 [95% confidence interval (CI) = 0.4–30.5] for subjects exposed to static fields within the derived bands and to ELF magnetic field above 0.30 μT (compared to subjects exposed to static fields outside the bands and ELF magnetic fields below 0.07 μT). When the 60 Hz magnetic fields were assessed according to the Wertheimer-Leeper code for wiring configurations, leukemia risks were again greater with the hypothesized exposure conditions (OR = 9.2 for very high current configurations within the static field bands: 95% CI = 1.3–64.6). Although the risk estimates are based on limited magnetic field measurements for a small number of subjects, these findings suggest that the risk of childhood leukemia may be related to the combined effects of the static and ELF magnetic fields. Further tests of the hypothesis are proposed. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Pulsed electromagnetic fields (PEMFs) have been used extensively in bone fracture repairs and wound healing. It is accepted that the induced electric field is the dose metric. The mechanisms of interaction between weak magnetic fields and biological systems present more ambiguity than that of PEMFs since weak electric currents induced by PEMFs are believed to mediate the healing process, which are absent in magnetic fields. The present study examines the response of human umbilical vein endothelial cells to weak static magnetic fields. We investigated proliferation, viability, and the expression of functional parameters such as eNOS, NO, and also gene expression of VEGF under the influence of different doses of weak magnetic fields. Applications of weak magnetic fields in tissue engineering are also discussed. Static magnetic fields may open new venues of research in the field of vascular therapies by promoting endothelial cell growth and by enhancing the healing response of the endothelium. Bioelectromagnetics 31:296–301, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
This study was designed to assess the effect of exposure to long-term extremely low-frequency electric and magnetic fields (ELF-EMF) from a 500 kV transmission line on IL-1 and IL-2 activity in sheep. The primary hypothesis was that the reduction in IL-1 activity observed in our two previous short-term studies (10 months) was due to EMF exposure from this transmission line. To repeat and expand these studies and to characterize the components of EMF responsible for the previously observed reduction in IL-1 activity, the current experiment examined not only the effect of exposure to electric and magnetic fields, but also the magnetic field component alone. In the current study, IL-2 was examined to characterize the effects of EMF exposure on an indicator of T cell responses. 45 Suffolk ewe lambs were randomized into three groups of 15 animals each. One group of animals was placed in the EMF pen, located directly beneath the transmission line. A second group was placed in the shielded MF (magnetic field only) pen, also directly beneath the transmission line. The third group of animals was placed in the control pen located several hundred meters away from the transmission line. During the 27 month exposure period, blood samples were taken from all animals monthly. When the data were analyzed collectively over time, no significant differences between the groups were found for IL-1 or IL-2 activity. In previous studies ewe lambs of 8-10 weeks of age were used as the study animals and significant differences in IL-1 activity were observed after exposure of these animals to EMF at mean magnetic fields of 3.5-3.8 microT (35-38 mG) and mean electric fields of 5.2-5.8 kV/m. At the start of the current study EMF levels were reduced as compared to previous studies. One interpretation of the current data is that magnetic field strength and age of the animals may be important variables in determining whether EMF exposure will affect IL-1 activity.  相似文献   

15.
Recent epidemiological studies suggest a link between transport magnetic fields (MF) and certain adverse health effects. We performed measurements in workplaces of engineers on Russian DC and Swiss AC powered (16.67 Hz) electric trains using a computer based waveform capture system with a 200 Hz sampling rate. MF in DC and AC trains show complex combinations of static and varying components. The most probable levels of quasistatic MF (0.001-0.03 Hz) were in the range 40 microT. Maximum levels of 120 microT were found in DC powered locomotives. These levels are much higher than the geomagnetic field at the site of measurements. MF encountered both in DC and AC powered rail systems showed irregular temporal variability in frequency composition and amplitude characteristics across the whole frequency range studied (0-50 Hz); however, more than 90% of the magnetic field power was concentrated in frequencies 相似文献   

16.
工频磁场是人类生活中接触最多的一类磁场,其引起的生物效应与人类健康的关系备受关注.本文选用1 mT、5 mT及10 mT工频磁场照射急性分离的小鼠皮层神经元(15 min),应用全细胞膜片钳技术离线记录通道电流,研究了工频磁场对神经元延迟整流钾通道特性的影响.结果显示,1 mT、5 mT及10 mT 3个强度的工频磁场对Ik均有抑制作用,但随着去极化电压的增加,发现1 mT和5 mT工频磁场的抑制率几乎不变,抑制率分别为(30 ± 4.2)%和(20 ± 2.2)%,而10 mT工频磁场的抑制率增加,最大抑制率为43.4%.另外,1 mT和5 mT工频磁场影响了延迟整流钾通道的激活特性,通道的半数激活电压变大,斜率因子不变.而10 mT工频磁场对通道的激活特性没有影响,半数激活电压和斜率因子均不改变.研究表明,工频磁场可能影响了细胞膜上离子通道蛋白质的结构和功能,并且不同强度工频磁场对通道的影响不同,存在强度窗口效应.  相似文献   

17.
From 2013 to 2018, in‐situ measurements of radiofrequency (RF) electromagnetic fields (EMF) and extremely low‐frequency (ELF) electric and magnetic fields in 317 existing and under‐construction children's playground facilities, in 16 municipalities all over Greece, were carried out by the Greek Atomic Energy Commission (EEAE). These measurements were conducted following legislative framework established in 2009, which requires that compliance with the established exposure limits for EMFs should be verified in playground areas. The results are presented by the value of the electric field (E) and exposure ratio (Λ) for the RF EMF, as well as the value of the electric field (E) and magnetic flux density (B) for the ELF electric and magnetic fields. Statistical analysis tools were applied on measurement data and conclusions have been made, taking into consideration: (i) environment type (urban/suburban), and (ii) vicinity to any transmitting installations. Measurement results correspond to the typical EMF background levels for each environment type. Concerning the environment type, RF EMF, and ELF electric/magnetic field measurements reveal no differentiation between urban and suburban environments. Bioelectromagnetics. 2019;40:602–605. © 2019 Bioelectromagnetics Society.  相似文献   

18.
Theoretical models proposed to date have been unable to clearly predict biological results from exposure to low-intensity electric and magnetic fields (EMF). Recently a predictive ionic resonance model was proposed by Lednev, based on an earlier atomic spectroscopy theory described by Podgoretskii and Podgoretskii and Khrustalev. The ion parametric resonance (IPR) model developed in this paper corrects mathematical errors in the earlier Lednev model and extends that model to give explicit predictions of biological responses to parallel AC and DC magnetic fields caused by field-induced changes in combinations of ions within the biological system. Distinct response forms predicted by the IPR model depend explicitly on the experimentally controlled variables: magnetic flux densities of the AC and DC magnetic fields (Bac and Bdc, respectively); AC frequency (fac); and, implicitly, charge to mass ratio of target ions. After clarifying the IPR model and extending it to combinations of different resonant ions, this paper proposes a basic set of experiments to test the IPR model directly which do not rely on the choice of a particular specimen or endpoint. While the fundamental bases of the model are supported by a variety of other studies, the IPR model is necessarily heuristic when applied to biological systems, because it is based on the premise that the magnitude and form of magnetic field interactions with unhydrated resonant ions in critical biological structures alter ion-associated biological activities that may in turn be correlated with observable effects in living systems. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Several effects of power‐frequency (50/60 Hz) magnetic fields (PF‐MF) of weak intensity have been hypothesized in animals and humans. No valid mechanism, however, has been proposed for an interaction between PF‐MF and biological tissues and living beings at intensities relevant to animal and human exposure. Here we proposed to consider PF‐MF as disrupters of the natural magnetic signal. Under exposure to these fields, an oscillating field exists that results from the vectorial summation of both the PF‐MF and the geomagnetic field. At a PF‐MF intensity (rms) of 0.5 µT, the peak‐to‐peak amplitude of the axis and/or intensity variations of this resulting field exceeds the related discrimination threshold of magnetoreception (MR) in migrating animals. From our evaluation of the 50/60 Hz responsiveness of the putative mechanisms of MR, single domain particles (Kirschvink's model) appear unable to transduce that oscillating signal. On the contrary, radical pair reactions are able to, as well as interacting multidomain iron–mineral platelets and clusters of superparamagnetic particles (Fleissner/Solov'yov's model). It is, however, not yet known whether the reception of 50/60 Hz oscillations of the natural magnetic signal might be of consequence or not. Bioelectromagnetics 31:371–379, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
人们对电磁辐射越来越关注,但是工频磁场产生的生物效应并不确定.选用1、5、10 mT的工频磁场照射急性分离的小鼠皮层神经元(15 min),应用全细胞膜片钳技术离线记录瞬时外向钾通道电流,研究工频磁场对离子通道的影响.结果显示:工频磁场抑制通道的电流密度,并且1 mT、5 mT及10 mT工频磁场的抑制率分别为(63.0±2.2)%、(55.0±1.7)%和(38.0±1.8)%.工频磁场影响离子通道的激活和失活特性,半数激活电压和半数失活电压变小.不同强度工频磁场对离子通道产生的影响程度不同,其中1 mT工频磁场对通道电流的抑制率最大,5 mT工频磁场对通道的半数激活电压和半数失活电压影响最大,10 mT工频磁场增大了通道的失活斜率因子.研究结果表明,工频磁场影响了细胞膜上离子通道蛋白质构象的变化,进一步影响了离子通道的正常功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号