首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal acclimation by Saxifraga cernua to low temperatures results in a change in the optimum temperature for gross photosynthetic activity and may directly involve the photosynthetic apparatus. In order to test this hypothesis photosynthetic electron transport activity of S. cernua thylakoids acclimated to growth temperatures of 20°C and 10°C was measured in vitro. Both populations exhibited optimum temperatures for whole chain and PSII electron transport activity at temperatures close to those at which the plants were grown. Chlorophyll a fluorescence transients from 10°C-acclimated leaves showed higher rates in the rise and subsequent quenching of variable fluorescence at low measuring temperatures; 20°C-acclimated leaves showed higher rates of fluorescence rise at higher measuring temperatures. At these higher temperatures, fluorescence quenching rates were similar in both populations. The kinetics of State 1-State 2 transitions in 20°C- and 10°C-acclimated leaf discs were measured as changes in the magnitude of the fluorescence emission maxima measured at 77K. Leaves acclimated at 10°C showed a larger F730/F695 ratio at low temperatures, while at higher temperatures, 20°C-acclimated leaves showed a higher F730/F695 ratio after the establishment of State 2. High incubation temperatures also resulted in a decrease in the F695/F685 ratio for 10°C-acclimated leaves, suggesting a reduction in the excitation transfer from the light-harvesting complex of photosystem II to photosystem II reaction centers. The relative amounts of chlorophyll-protein complexes and thylakoid polypeptides separated electro-phoretically were similar for both 20°C- and 10°C-acclimated leaves. Thus, photosynthetic acclimation to low temperatures by S. cernua is correlated with an increase in photosynthetic electron transport activity but does not appear to be accompanied by major structural changes or different relative amounts in thylakoid protein composition.  相似文献   

2.
Two different mutants of Arabidopsis thaliana deficient in chloroplast membrane lipid polyunsaturation were indistinguishable in appearance from the wild-type when grown at 22°C. By contrast, leaf tissues of the mutants that developed during growth at 5°C were chlorotic, whereas the wild type was not. This is the first direct evidence that chloroplast lipid polyunsaturation contributes to low-temperature fitness. Chloroplasts from mutant lines grown at 5°C were much smaller than those of the wild-type, and the thylakoid membrane content was reduced by up to 70%. However, there was no discernible effect of low temperature on chloroplasts that developed prior to exposure to low temperatures. These and related observations suggest that the high degree of chloroplast membrane lipid polyunsaturation is required for some aspect of chloroplast biogenesis.  相似文献   

3.
Thylakoids isolated from leaves of winter rye (Secale cereale L. cv Puma) grown at either 20 or 5°C were extracted with the nonionic detergents Triton X-100 and octyl glucoside. Less total chlorophyll was extracted from 5°C thylakoids by these detergents under all conditions, including pretreatment with cations. Thylakoids from either 20 or 5°C leaves were solubilized in 0.7% Triton X-100 and centrifuged on sucrose gradients to purify the light harvesting complex (LHCII). Greater yields of LHCII were obtained by cation precipitation of particles derived from 20°C thylakoids than from 5°C thylakoids. When 20 and 5°C thylakoids were phosphorylated and completely solubilized in sodium dodecyl sulfate, no differences were observed in the 32Pi-labeling characteristics of the membrane polypeptides. However, when phosphorylated thylakoids were extracted with octyl glucoside, extraction of LHCII associated with the 5°C thylakoids was markedly reduced in comparison with the extraction of LHCII from 20°C membranes. Since 20 and 5°C thylakoids exhibited significant differences in the Chl content and Chl a/b ratios of membrane fractions produced after solubilization with either Triton X-100 or octyl glucoside, and since few differences between the proteins of the two membranes could be observed following complete denaturation in sodium dodecyl sulfate, we conclude that the integral structure of the thylakoid membrane is affected during rye leaf development at low temperature.  相似文献   

4.
Accumulation of heat shock proteins in field-grown cotton   总被引:13,自引:8,他引:5       下载免费PDF全文
Cotton (Gossypium hirsutum L.) plants grown under field water deficits exhibited an 80 to 85% reduction in leaf area index, plant height, and dry matter accumulation compared with irrigated controls. Midday photosynthetic rates of dryland plants decreased 2-fold, and canopy temperatures increased to 40°C at 80 days after planting compared with canopy temperatures of 30°C for irrigated plants. Leaves from dryland plants which had exhibited canopy temperatures of 40°C for several weeks accumulated stainable levels of polypeptides with apparent molecular weights of 100, 94, 89, 75, 60, 58, 37, and 21 kilodaltons. These polypeptides did not accumulate in leaves from irrigated plants.

Addition of [35S]methionine to leaves of growth chamber-grown cotton plants and subsequent incubation at 40°C for 3 hours radiolabeled polypeptides with molecular weights similar to those that accumulate in dryland cotton leaves. These data suggest that the proteins which accumulate in water-stressed cotton leaves at elevated temperatures (40°C) are heat shock proteins and that these proteins can accumulate to substantial levels in field-stressed plants.

  相似文献   

5.
Attached leaves of pumpkin (Cucurbita pepo L.) were treated in high or moderate light at room temperature or a 1°C. The symptoms of photoinhibition appearing during light treatments at room temperature could be attributed to a decrease in the primary activity of PSII. However, when the light treatment was given at 1°C, the quantum yield of photosynthetic oxygen evolution decreased much more than would be expected from the decrease in the ratio of variable to maximum fluorescence at 77°K. Also, light treatment at 1°C lowered the chloroplast wholechain electron transfer capacity much more than it affected PSII electron transport (H2O to paraphenylbenzoquinone). Light treatments at both room temperature and 1°C led to an increase in Bmax, which indicates an increase in the proportion of PSIIβ centers. PSI was not affected by the light treatments, and the treatments in the dark at 1°C caused only minor changes in the measured properties of the leaves. We conclude that high light always inhibits the primary activity of PSII, but at low temperature there is greater inhibition of electron transfer from primary electron accepting plastoquinone of PSII to the plastoquinone pool, which leads to a drastic decrease in the quantum yield of oxygen evolution in the chilling-sensitive pumpkin.  相似文献   

6.
The leaves of chilling-sensitive pumpkin (Cucurbita pepo L.) showed symptoms reminiscent of photoinhibition when kept for 4 days at 5°C in moderate light. A decrease was observed in the variable part of chlorophyll α fluorescence, apparent quantum yield, and maximum rate of O2 evolution. Chloroplast whole-chain electron transport activity measured from chloroplast thylakoids had decreased to 51% of the control value. Photosystem II (PSII) activity decreased by only 9%, suggesting that photoinhibition was not responsible for the loss of electron transport activity. An increase in the proportion of PSIIβ (measured as a βmax value) was observed after the chilling treatment. Fractionation of thylakoid membranes showed a 42% increase in PSII activity in the nonappressed region while that in the appressed region decreased slightly. This was accompanied by a decrease in the ratio of the length of appressed to nonappressed thylakoid membranes. Leaf photosynthesis largely recovered within 24 hours of returning to the original growth conditions. We suggest that the increase in the proportion of PSIIβ during chilling in light plays a role in protecting PSII from photoinhibitory damage.  相似文献   

7.
Lipid and fatty acid analyses were performed on whole leaf extracts and isolated thylakoids from winter rye (Secale cereale L. cv Puma) grown at 5°C cold-hardened rye (RH) and 20°C nonhardened rye (RNH). Although no significant change in total lipid content was observed, growth at low, cold-hardening temperature resulted in a specific 67% (thylakoids) to 74% (whole leaves) decrease in the trans3-hexadecenoic acid (trans-16:1) level associated with phosphatidyldiacylglycerol (PG). Electron spin resonance and differential scanning calorimetry (DSC) indicated no significant difference in the fluidity of RH and RNH thylakoids. Separation of chlorophyll-protein complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the ratio of oligomeric light harvesting complex:monomeric light harvesting complex (LHCII1:LHCII3) was 2-fold higher in RNH than RH thylakoids. The ratio of CP1a:CP1 was also 1.5-fold higher in RNH than RH thylakoids. Analyses of winter rye grown at 20, 15, 10, and 5°C indicated that both, the trans-16:1 acid levels in PG and the LHCII1:LHCII3 decreased concomitantly with a decrease in growth temperature. Above 40°C, differential scanning calorimetry of RNH thylakoids indicated the presence of five major endotherms (47, 60, 67, 73, and 86°C). Although the general features of the temperature transitions observed above 40°C in RH thylakoids were similar to those observed for RNH thylakoids, the transitions at 60 and 73°C were resolved as inflections only and RH thylakoids exhibited transitions at 45 and 84°C which were 2°C lower than those observed in RNH thylakoids. Since polypeptide and lipid compositions of RH and RNH thylakoids were very similar, we suggest that these differences reflect alterations in thylakoid membrane organization. Specifically, it is suggested that low developmental temperature modulates LHCII organization such that oligomeric LHCII predominates in RNH thylakoids whereas a monomeric or an intermediate form of LHCII predominates in RH thylakoids. Furthermore, we conclude that low developmental temperature modulates LHCII organization by specifically altering the fatty composition of thylakoid PG.  相似文献   

8.
As part of an analysis of the factors regulating photosynthesis in Agropyron smithii Rydb., a C3 grass, the response of electron transport and photophosphorylation to temperature in isolated chloroplast thylakoids has been examined. The response of the light reactions to temperature was found to depend strongly on the preincubation time especially at temperatures above 35°C. Using methyl viologen as a noncyclic electron acceptor, coupled electron transport was found to be stable to 38°C; however, uncoupled electron transport was inhibited above 38°C. Photophosphorylation became unstable at lower temperatures, becoming progressively inhibited from 35 to 42°C. The coupling ratio, ATP/2e, decreased continuously with temperature above 35°C. Likewise, photosystem I electron transport was stable up to 48°C, while cyclic photophosphorylation became inhibited above 35°C. Net proton uptake was found to decrease with temperatures above 35°C supporting the hypothesis that high temperature produces thermal uncoupling in these chloroplast thylakoids. Previously determined limitations of net photosynthesis in whole leaves in the temperature region from 35 to 40°C may be due to thermal uncoupling that limits ATP and/or changes the stromal environment required for photosynthetic carbon reduction. Previously determined limitations to photosynthesis in whole leaves above 40°C correlate with inhibition of photosynthetic electron transport at photosystem II along with the cessation of photophosphorylation.  相似文献   

9.
The lipid composition and level of unsaturation of fatty acids has been determined for chloroplast thylakoid membranes isolated from Pisum sativum grown under cold (4°/7°C) or warm (14°/17°C) conditions. Both the relative amounts of lipid classes and degree of saturation were not greatly changed for the two growth conditions. In cold-grown plants, there was a slightly higher linolenic and lower linoleic acid content for the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol. In contrast to thylakoid membranes, a non-thylakoid leaf membrane fraction including the chloroplast envelope, had a higher overall level of fatty acid unsaturation in cold-grown plants due mainly to an increase in the linolenic acid content of MGDG, DGDG, phosphatidylglycerol, and phosphatidylcholine. The most clear cut change in the thylakoid membrane composition was the lipid to protein ratio which was higher in the cold-grown plants.  相似文献   

10.
The temperature dependence of the rate and magnitude of the reappearance of photosystem II (PSII) variable fluorescence following illumination has been used to determine plant temperature optima. The present study was designed to determine the effect of a plant's environmental history on the thermal dependency of the reappearance of PSII variable fluorescence. In addition, this study further evaluated the usefulness of this fluorescence technique in identifying plant temperature optima. Laboratory and greenhouse grown potato (Solanum tuberosum L. cv “Norgold M”) plants had a thermal kinetic window between 15 and 25°C. The minimum apparent Km of NADH hydroxypyruvate reductase for NADH occurred at 20°C. This temperature was also the temperature providing maximal reappearance of variable fluorescence. Soybean (Glycine max [L.] Merrill cv “Wayne”) plants had a thermal kinetic window between 15 and 30°C with a minimum apparent Km at 25°C. Maximal reappearance of variable fluorescence was seen between 20 and 30°C. To determine if increasing environmental temperatures increased the temperature optimum provided from the fluorescence response curves, potato and soybean leaves from irrigated and dryland field grown plants were evaluated. Although the absolute levels of PSII variable fluorescence declined with increasing thermal stress, the temperature optimum of the dryland plants did not increase with increased exposure to elevated temperatures. Because of variability in the daily period of high temperature stress in the field, studies were initiated with tobacco plants grown in controlled environment chambers. The reappearance of PSII variable fluorescence in tobacco (Nicotiana tabacum L. cv “Wisconsin 38”) leaves that had experienced continuous leaf temperatures of 35°C for 8 days had the same 20°C optima as leaves from plants grown at room temperature. The results of this study suggest that the temperature optimum for the reappearance of variable fluorescence following illumination is not altered by the plant's previous exposure to variable environmental temperatures. These findings support the usefulness of this procedure for the rapid identification of a plant's temperature optimum.  相似文献   

11.
Thermoluminescence (TL) signals were recorded from grana stacks, margins, and stroma lamellae from fractionated, dark-adapted thylakoid membranes of spinach (Spinacia oleracea L.) in the absence and in the presence of 2,6-dichlorphenylindophenol (DCMU). In the absence of DCMU, the TL signal from grana fractions consisted of a homogenous B-band, which originates from recombination of the semi-quinone QB with the S2 state of the water-splitting complex and reflects active photosystem II (PSII). In the presence of DCMU, the B-band was replaced by the Q-band, which originates from an S2QA recombination. Margin fractions mainly showed two TL-bands, the B- and C-bands, at approximately 50°C in the absence of DCMU, and Q- and C-bands in the presence of DCMU. The C-band is ascribed to a TyrD+-QA recombination. In the absence of DCMU, the fractions of stromal lamellae mainly gave rise to a TL emission at 42°C. The intensity of this band was independent of the number of excitation flashes and was shifted to higher temperatures (52°C) after the addition of DCMU. Based on these observations, this band was considered to be a C-band. After photoinhibitory light treatment of uncoupled thylakoid membranes, the TL intensities of the B- and Q-bands decreased, whereas the intensity at 45°C (C-band) slightly increased. It is proposed that the 42 to 52°C band that was observed in marginal and stromal lamellae and in photoinhibited thylakoid membranes reflects inactive PSII centers that are assumed to be equivalent to inactive PSII QB-nonreducing centers.  相似文献   

12.
Differential scanning calorimetry was employed to investigate the structure of spinach (Spinacia oleracea) chloroplast membranes. In a low ionic strength Hepes-buffered medium, major calorimetric transitions were resolved at 42.5°C. (A), 60.6°C (B), 64.9°C (C1), 69.6°C (C2), 75.8°C (D), 84.3°C (E), and 88.9°C (F). A lipid melting transition was also commonly seen at 17°C in scans starting at lower temperatures. The D transition was demonstrated by four independent methods to derive from denaturation of the light harvesting complex associated with photosystem II (LHC-II). Evidence for this conclusion was as follows: (a) the endotherm of the isolated LHC-II (74.0°C) was very similar to that of D (75.8°C); (b) the denaturation temperature of the 27 kilodalton LHC-II polypeptide determined in intact chloroplast membranes by thermal gel analysis was identical to the temperature of the D transition at pH 7.6 and after destabilization by shifting the pH to 6.6 or by addition of Mg2+; (c) analysis of the stability of the LHC-II complex by electrophoresis in native gels demonstrated that the complex dissociates during the D transition, both at pH 7.6 and 6.6; and (d) the 77 Kelvin fluorescence maximum of LHC-II in chloroplasts was seen to shift to lower wavelengths (indicating gross denaturation of LHC-II), at the temperature of the D transition when examined at either of the above pHs. With this identification, five of the eight major endotherms of the chloroplast membrane have now been assigned.  相似文献   

13.
In this paper we compared the pigment composition, photochemical activity, chloroplast ultrastructure, thylakoid membrane polypeptide composition and ribosomal content of wild-type and seven light-sensitive mutants of Chlamydomonas reinhardii.All the mutants had low chlorophyll and carotenoid content compared to wild-type. Mutants lts-30 and lts-135 were also characterized by a complete absence of visible carotenoids, while mutant lts-19 was fully deficient in chlorophylls.In most mutants, the chloroplast fragment could not carry out any DCIP photoreduction and O2 evolution was also blocked. The PSI/P700/activity was decreased in most cases.The mutant strains contained mostly single lamellae in their plastids, that is the stacking capacity of the thylakoid membranes was very decreased or fully absent. In most cases the number of lamellae was also very low.The relative amounts of 70 S ribosomes were decreased in all of the mutants. The thylakoid membranes showed anomalies in the region of 24 000–30 000 dalton polypeptides. The common characteristic for them was the relatively higher amount of the 30 000 dalton polypeptide and considerably decreased level of the 27 000 and 24 000 dalton polypeptides relative to the wild-type. These polypeptides were probably constituents of the chlorophyll-protein complex II which has been suggested to be the light harvesting pigment complex for PSII. The polypeptide of 30 000 daltons is the precursor for the LHCP apoprotein (24 000 dalton protein). It may be that the lighstimulated conversion of this precursor into LHCP apoprotein was blocked in our pigment-deficient mutants.Abbreviations CPI Chlorophyll-protein complex I - PSI Photosystem I - PSII Photosystem II - LHCP Light-harvesting pigment complex - DCIP 2,6-dichlorophenolindophenol - RuDPC-ase Ribulose-1,5-biphosphate-carboxylase - SDS Sodium dodecyl sulfate - LIDS Lithium dodecyl sulfate - PAG Polyacrylamide gel - TKM buffer 25 mM Tris-HCl, pH 7.S; 25 mM KCl; 25 mM Mg acetate  相似文献   

14.
A postulated role of the CN-resistant alternative respiratory pathway in plants is the maintenance of mitochondrial electron transport at low temperatures that would otherwise inhibit the main phosphorylating pathway and prevent the formation of toxic reactive oxygen species. This role is supported by the observation that alternative oxidase protein levels often increase when plants are subjected to growth at low temperatures. We used oxygen isotope fractionation to measure the distribution of electrons between the main and alternative pathways in mung bean (Vigna radiata) and soybean (Glycine max) following growth at low temperature. The amount of alternative oxidase protein in mung bean grown at 19°C increased over 2-fold in both hypocotyls and leaves compared with plants grown at 28°C but was unchanged in soybean cotyledons grown at 14°C compared with plants grown at 28°C. When the short-term response of tissue respiration was measured over the temperature range of 35°C to 9°C, decreases in the activities of both main and alternative pathway respiration were observed regardless of the growth temperature, and the relative partitioning of electrons to the alternative pathway generally decreased as the temperature was lowered. However, cold-grown mung bean plants that up-regulated the level of alternative oxidase protein maintained a greater electron partitioning to the alternative oxidase when measured at temperatures below 19°C supporting a role for the alternative pathway in response to low temperatures in mung bean. This response was not observed in soybean cotyledons, in which high levels of alternative pathway activity were seen at both high and low temperatures.  相似文献   

15.
When leaves of a mangrove, Rhizophora mangle, were exposed to an excess of light at chilling temperatures, synthesis of zeaxanthin through violaxanthin de-epoxidation as well as nonphotochemical fluorescence quenching were markedly reduced. The results suggest a protective role of energy dissipation against the adverse effects of high light and chilling temperatures: leaves of R. mangle that had been preilluminated in 2% O2, 0% CO2 at low photon flux density and showed a high level of zeaxanthin, and leaves that had been kept in the dark and contained no zeaxanthin, were both exposed to high light and chilling temperatures (5°C leaf temperature) in air and then held under control conditions in low light in air at 25°C. Measurements of chlorophyll a fluorescence at room temperature showed that the photochemical efficiency of PSII and the yield of maximum fluorescence of the preilluminated leaf recovered completely within 1 to 3 hours under the control conditions. In contrast, the fluorescence responses of the predarkened leaf in high light at 5°C did not recover at all. During a dark/light transient in 2% O2, 0% CO2 in low light at 5°C, nonphotochemical fluorescence quenching increased linearly with an increase in the zeaxanthin content in leaves of R. mangle. In soybean (Glycine max) leaves, which contained a background level of zeaxanthin in the dark, a similar treatment with excess light induced a level of nonphotochemical fluorescence quenching that was not paralleled by an increase in the zeaxanthin content.  相似文献   

16.
Leaf discs of four dicotyledonous species, when incubated at temperatures of 4 to 18°C (optimum at 12°C) for 30 or 60 minutes, responded by accumulations of membranes in the chloroplast stroma in the space between the inner membrane of the envelope and the thylakoids. The accumulated membranes, here referred to as the low temperature compartment, were frequently continuous with the envelope membrane and exhibited kinetics of formation consistent with a derivation from the envelope. Results were similar for expanding leaves of garden pea (Pisum sativum), soybean (Glycine max), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum). We suggest that the stromal low temperature compartment may be analogous to the compartment induced to form between the transitional endoplasmic reticulum and the Golgi apparatus at low temperatures. The findings provide evidence for the possibility of a vesicular transfer of membrane constituents between the inner membrane of the chloroplast envelope and the thylakoids of mature chloroplasts in expanding leaves.  相似文献   

17.
Thylakoid membranes isolated from cold tolerant, herbaceous monocots and dicots grown at 5°C exhibit a 1.5-fold to 2.7-fold increase in light saturated rates of photosystem I (PSI) electron transport compared to thylakoids isolated from the same plant species grown at 20°C. This was observed only when either water or reduced dichlorophenolindophenol was used as an electron donor. The apparent quantum yield for PSI electron transport was not affected by growth temperature. The higher light saturated rates of PSI electron transport in 5°C thylakoids had an absolute requirement for the presence of Na+ and Mg+2. The accessibility of reduced dichlorophenolindophenol to the donor site was not affected by growth temperature since 5°C and 20°C thylakoids exhibited no significant difference in the concentration of this electron donor required for half-maximal PSI activity. The cation dependent higher rates of light saturated PSI activity were also observed when rye thylakoids were developed under intermittent light conditions at 5°C. Thus, this cation effect on PSI activity appeared to be independent of light harvesting complex I and II. The extent of the in vitro reversibility of this cation effect appeared to be limited by an inherent decay process for PSI electron transport. The rate of decay for PSI activity was greatest when thylakoids were isolated in the absence of NaCl and MgCl2. We conclude that exposure of plants to low growth temperatures induces a reorganization of thylakoid membranes which increases the light saturated rates of PSI electron transport with no change in the apparent quantum efficiency for this reaction. Cations are required to stabilize this reorganization.  相似文献   

18.
Bromus inermis Leyss cell cultures treated with 75 micromolar abscisic acid (ABA) at both 23 and 3°C developed more freezing resistance than cells cultured at 3°C. Protein synthesis in cells induced to become freezing tolerant by ABA and low temperature was monitored by [14C]leucine incorporation. Protein synthesis continued at 3°C, but net cell growth was stopped. Most of the major proteins detected at 23°C were synthesized at 3°C. However, some proteins were synthesized only at low temperatures, whereas others were inhibited. ABA showed similar effects on protein synthesis at both 23 and 3°C. Comparative electrophoretic analysis of [14C]leucine labeled protein detected the synthesis of 19, 21 and 47 kilodalton proteins in less than 8 hours after exposure to exogenous ABA. Proteins in the 20 kilodalton range were also synthesized at 3°C. In addition, a 31 kilodalton protein band showed increased expression in freezing resistant ABA treated cultures after 36 hours growth at both 3 and 23°C. Quantitative analysis of [14C]leucine labeled polypeptides in two-dimensional gels confirmed the increased expression of the 31 kilodalton protein. Two-dimensional analysis also resolved a 72 kilodalton protein enriched in ABA treated cultures and identified three proteins (24.5, 47, and 48 kilodaltons) induced by low temperature growth.  相似文献   

19.
Exposure of 25 °C-grown, seven-day-old rice seedlings to mild heat stress of 40 °C for 24 h in dark did not cause any change in protein or pigment content of the thylakoids, but produced major disorganization of chloroplast ultrastructure. This heat induced disorganization of thylakoid structure/organization caused significant (65 percnt;) loss in PSII activity, slight loss in PSI activity, and brought about a decrease in relative quantum efficiency of PSII. The herbicide 14C atrazine binding assay revealed a decreased number of binding sites of the herbicide and altered the herbicide dissociation constant, suggesting that the heat induced disorganization of the thylakoids affects the acceptor side of PSII. Cation induced Chla fluorescence analyses at room temperature and low temperature indicated thatin vivo heat exposure of rice seedlings altered the extent of energy transfer in favor of PSI. Immunoblotting analysis of several PSII polypeptides such as D1/D2 reaction dimer and Cyt b559 showed no major changes due to mild heat exposure except for the PSII core antenna polypeptide (CP43), which could reflect the reduction in PSII activity observed in light saturation studies. Similarly, haeme staining did not indicate any change in other cytochrome related polypeptides. Our results therefore clearly suggest thatin vivo exposure of rice seedlings to elevated (40 °C) temperature caused thylakoid structural disorganization, and this disorganization of some of the thylakoid complexes resulted in a loss in thylakoid photochemical function.  相似文献   

20.
The heterogeneous ice nucleation characteristics and frost injury in supercooled leaves upon ice formation were studied in nonhardened and cold-hardened species and crosses of tuber-bearing Solanum. The ice nucleation activity of the leaves was low at temperatures just below 0°C and further decreased as a result of cold acclimation. In the absence of supercooling, the nonhardened and cold-hardened leaves tolerated extracellular freezing between −3.5° and −8.5°C. However, if ice initiation in the supercooled leaves occurred at any temperature below −2.6°C, the leaves were lethally injured.

To prevent supercooling in these leaves, various nucleants were tested for their ice nucleating ability. One% aqueous suspensions of fluorophlogopite and acetoacetanilide were found to be effective in ice nucleation of the Solanum leaves above −1°C. They had threshold temperatures of −0.7° and −0.8°C, respectively, for freezing in distilled H2O. Although freezing could be initiated in the Solanum leaves above −1°C with both the nucleants, 1% aqueous fluorophlogopite suspension showed overall higher ice nucleation activity than acetoacetanilide and was nontoxic to the leaves. The cold-hardened leaves survived between −2.5° and −6.5° using 1% aqueous fluorophlogopite suspension as a nucleant. The killing temperatures in the cold-hardened leaves were similar to those determined using ice as a nucleant. However, in the nonhardened leaves, use of fluorophlogopite as a nucleant resulted in lethal injury at higher temperatures than those estimated using ice as a nucleant.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号