首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the immobilization technique involving photo-crosslinkable resin gels was used for lactic acid production. Saccharomyces cerevisiae OC-2T T165R, a metabolically engineered yeast that produces optically pure l(+)-lactic acid, was immobilized in hydrophilic photo-crosslinked resin gels as a biocatalyst. Three resin gels, TEP 1, TEP 2 and TEP 3, were examined and all of them showed high performance as to lactic acid production. Resin gel TEP 1, which exhibited the highest productivity among the resin gels was used for 15 consecutive batch fermentations without decreases in productivity and mechanical deformation, indicating that it was a suitable carrier for long-term lactic acid fermentation. Moreover, the use of the immobilization technique can improve the productivity of the metabolically engineered yeast in the fermentation with or without extraction, showing promise for using the immobilized engineered yeast for lactic acid production.  相似文献   

2.
Summary A novel method of lactic acid fermentation byLactobacillus casei immobilized in Ca—alginate gels is described, in which an ion—exchange resin packed column is attached to a fermentor for separation of lactic acid from fermentative broth. The technique successfully alleviated the restriction imposed by lactic acid on bacterial growth and product formation. As compared to the conventional batch fermentation, the new fermentation technique enhanced the lactic acid productivity and sugar conversion rate from 0.328g/L·h and 88. 2% to 0.482g/L·h and 98.6%, respectively.  相似文献   

3.
4.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol) formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the methodology has great importance in large-scale production of optically pure lactic acid.  相似文献   

5.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

6.
In this study, Saccharomyces cerevisiae OC-2T T165R, metabolically engineered to produce optically pure L(+)-lactic acid, was used to develop a high performance extractive fermentation process. Since the transgenic yeast could produce lactic acid efficiently even at lower than pH 3.5, high extractive efficiency was achieved when tri-n-decylamine (TDA), a tertiary amine, was used as the extractant. Separation of microorganisms by means of a hollow fiber module could not only improve the total amount of lactic acid produced but also increase the lactic acid concentration in the solvent. Moreover, pH had a significant effect on extractive fermentation. The highest rate of recovery of lactic acid could be obtained on pH-uncontrolled fermentation (pH 2.5); however, the lowest amount of lactic acid was produced. Taking into account the trade-off between the fermentation and extraction efficiencies, the optimum pH value was considered to be 3.5, with which the largest amount of lactic acid was produced and the highest lactic acid concentration in the solvent was obtained. The results show promise for the use of the transgenic yeast for extractive fermentation.  相似文献   

7.
Summary The process of lactic acid fermentation of lactose to lactic acid by Lactobacillus rhamnosus ATCC 7469 has been studied. The following processes have been explored: growth kinetics, as well as lactose utilization, production of lactic acid and further degradation of lactic acid. The immobilization experiments were conducted with microbial cells entrapped in polyacrylamide gels. Gels with different ratios of the monomer (acrylamide) and the cross-linking agent (N,N′-methylene-bis-acrylamide) have been tested. These were used in a repeat-batch process. The current processes inside and outside the gel particles were subjects of examination. The evolution of the activity of immobilized cells with repeated use showed that the particles served mainly as a donor of cells for the free culture. In all experiments a very high degree of conversion, 85–90% was observed. After several runs however, the particles were exhausted for microbial cells. A kinetic model of the process of lactic acid production was developed. This model allowed the evaluation of the effect of microbial growth and diffusion limitations inside the gel particles on the process rate and the separate contribution of the free and immobilized cells to the overall fermentation process upon multiple use.  相似文献   

8.
Lactic acid is a versatile organic acid, which finds major application in the food, pharmaceuticals, and chemical industries. Microbial fermentation has the advantage that by choosing a strain of lactic acid bacteria producing only one of the isomers, an optically pure product can be obtained. The production of l(+) lactic acid is of significant importance from nutritional viewpoint and finds greater use in food industry. In view of economic significance of immobilization technology over the free-cell system, immobilized preparation of Lactobacillus casei was employed in the present investigation to produce l(+) lactic acid from whey medium. The process conditions for the immobilization of this bacterium using calcium pectate gel were optimized, and the developed cell system was found stable during whey fermentation to lactic acid. A high lactose conversion (94.37%) to lactic acid (32.95 g/l) was achieved with the developed immobilized system. The long-term viability of the pectate-entrapped bacterial cells was tested by reusing the immobilized bacterial biomass, and the entrapped bacterial cells showed no decrease in lactose conversion to lactic acid up to 16 batches, which proved its high stability and potential for commercial application.  相似文献   

9.
Zymomonas mobilis B-69 147, an ethanol-producing bacterium, was immobilized in photo-crosslinkable resin gels to form a biocatalyst system. Continuous ethanol fermentation with this immobilized Zymomonas was carried out in molasses and compared to that with immobilized yeast. As a result of operating this process for two weeks, a productivity of 60 g/l·h based on immobilized gel was obtained with improvement in the poor tolerance to salts of Zymomonas. The productivity of immobilized Z. mobilis was superior to that of immobilized yeast.  相似文献   

10.
Industrial applications for lactate, such as the production of chemicals, has led to interest in producing this organic acid by metabolically engineered a yeast such as Saccharomyces cerevisiae, which is more acid tolerant than lactic acid bacteria. This paper deals with lactate production by S. cerevisiae K1-LDH, in which the Lactobacillus plantarum lactate dehydrogenase (LDH) gene is integrated into the genome of the wine yeast strain K1. We show that a vitamin, nicotinic acid (NiA), was the limiting factor for lactate production during fermentation with the K1-LDH strain. Increasing the NiA concentration in batch conditions or in the medium used to feed chemostats affected the lactate yield. Moreover, the addition of pulses of NiA or the exponential addition of NiA made it possible to control the lactate production kinetics throughout the fermentation process. The results point to the role of NiA in the regulation of metabolic pathways, but the physiological mechanisms remain poorly understood.  相似文献   

11.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

12.
Lactic acid production by recycle batch fermentation using immobilized cells of Lactobacillus casei subsp. rhamnosus was studied. The culture medium was composed of whey treated with an endoprotease, and supplemented with 2.5 g/L of yeast extract and 0.18 mM Mn(2+) ions. The fermentation set-up comprised of a column packed with polyethyleneimine-coated foam glass particles, Pora-bact A, and connected with recirculation to a stirred tank reactor vessel for pH control. The immobilization of L. casei was performed simply by circulating the culture medium inoculated with the organism over the beads. At this stage, a long lag period preceded the cell growth and lactic acid production. Subsequently, for recycle batch fermentations using the immobilized cells, the reducing sugar concentration of the medium was increased to 100 g/L by addition of glucose. The lactic acid production started immediately after onset of fermentation and the average reactor productivity during repeated cycles was about 4.3 to 4.6 g/L . h, with complete substrate utilization and more than 90% product yield. Sugar consumption and lactate yield were maintained at the same level with increase in medium volume up to at least 10 times that of the immobilized biocatalyst. The liberation of significant amounts of cells into the medium limited the number of fermentation cycles possible in a recycle batch mode. Use of lower yeast extract concentration reduced the amount of suspended biomass without significant change in productivity, thereby also increasing the number of fermentation cycles, and even maintained the D-lactate amount at low levels. The product was recovered from the clarified and decolorized broth by ion-exchange adsorption. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:841-853, 1997.  相似文献   

13.
Fermentation of xylose from hydrolysate of acid-treated corn cob by Pichia stipitis is inhibited by acetic acid and lignin derivatives. In the present study, we have designed and implemented an immobilized cell culture for xylose to ethanol conversion from acid-treated corn cob hydrolysate without the removal of fermentation inhibitors. In this study, cultivations of suspended and immobilized Pichia were compared in terms of ethanol yield and productivity to investigate whether the cell immobilization could improve resistance to inhibitors. Cell immobilization clearly favored the fermentative metabolism in nondetoxified corn cob hydrolysate leading to an improvement of twofold ethanol productivity as compared to that achieved with suspension culture. Calcium alginate as an immobilization matrix was selected to immobilize Pichia cells. Concentrations of sodium alginate, calcium chloride, and fermentor agitation speed were optimized for ethanol production using statistical method. Statistical analysis showed that agitation speed had maximum influence on ethanol production by immobilized Pichia cells. In comparison to suspension culture, immobilization had a positive impact on the fermentative metabolism of Pichia, improving the ethanol yield from 0.40 to 0.43?g/g and productivity from 0.31 to 0.51?g/L/h for acid-treated corn cob hydrolysate.  相似文献   

14.

Immobilization of Lactobacillus rhamnosus ATCC7469 in poly(vinyl alcohol)/calcium alginate (PVA/Ca-alginate) matrix using “freezing–thawing” technique for application in lactic acid (LA) fermentation was studied in this paper. PVA/Ca-alginate beads were made from sterile and non-sterile PVA and sodium alginate solutions. According to mechanical properties, the PVA/Ca-alginate beads expressed a strong elastic character. Obtained PVA/Ca-alginate beads were further applied in batch and repeated batch LA fermentations. Regarding cell viability, L. rhamnosus cells survived well rather sharp immobilization procedure and significant cell proliferation was observed in further fermentation studies achieving high cell viability (up to 10.7 log CFU g−1) in sterile beads. In batch LA fermentation, the immobilized biocatalyst was superior to free cell fermentation system (by 37.1%), while the highest LA yield and volumetric productivity of 97.6% and 0.8 g L−1 h−1, respectively, were attained in repeated batch fermentation. During seven consecutive batch fermentations, the biocatalyst showed high mechanical and operational stability reaching an overall productivity of 0.78 g L−1 h−1. This study suggested that the “freezing–thawing” technique can be successfully used for immobilization of L. rhamnosus in PVA/Ca-alginate matrix without loss of either viability or LA fermentation capability.

  相似文献   

15.
d ‐lactic acid is of great interest because of increasing demand for biobased poly‐lactic acid (PLA). Blending poly‐l ‐lactic acid with poly‐d ‐lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d ‐lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l ‐lactate‐deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1‐pCU‐PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d ‐lactic acid yield and productivity. d ‐lactic acid (27.3 g L?1) and productivity (0.75 g L?1 h?1) was obtained from corn stover and d ‐lactic acid (22.0 g L?1) and productivity (0.65 g L?1 h?1) was obtained from sorghum stalks using ΔldhL1‐pCU‐PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d ‐lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d ‐lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271–278, 2016  相似文献   

16.
Summary Mycelia of Streptomyces sp. T 59-235 and Streptomyces tendae Tü 901 (producing the antibiotics tylosin and nikkomycin, resp.) were immobilized in different carriers. With both organisms best antibiotic production was observed in calcium alginate gel.Influence of aeration, cell density and flow rate on antibiotic production was investigated in batch fermentation and in a continuous system (air-bubbled reactor).In batch fermentation, immobilization prolongued the production phase from 72 to 120 h (Streptomyces T 59-235) and from 72 to 96 h (S. tendae). The relative productivity of immobilized cells was 40 to 50% compared to that of free mycelia in both cases.In continuous tylosin fermentation highest production rate was observed in a medium nearly saturated with oxygen.Nikkomycin production by immobilized S. tendae could be maintained for longer than 350 h in a continuous system. The production rate depended on cell density and flow rate of the medium. The maximum specific productivity was 100% compared to that of free mycelium in batch culture.  相似文献   

17.
Salt whey permeate was used as a substrate for lactic acid production by different strains of homofermentative lactobacilli. An isolate from Egyptian Cheddar cheese proved to be the most effective lactic acid producer. The salt whey permeate was optimized by addition of yeast extract and minerals to enable exponential growth of organisms. The lactic acid productivity of free and immobilized cells was compared and fermentation conditions were improved. Continuous lactic acid fermentation from salt whey permeate with cells immobilized in agarose beads was successfully carried out in a chemostat with a steady lactic acid concentration of 33.4 mg/ml.  相似文献   

18.
Lactic acid production by repeated fed-batch fermentation using free and immobilized cells of Lactobacillus lactis-11 in a packed bed-stirred fermentor (PBSF) system filled with different support materials including ceramic beads, macro-activated carbon cylinders and glass fiber balls was investigated. The results showed that the optimal support materials were the ceramic beads with diameters of 1–2 mm. Compared with the free cell fermentation system, lactic acid production and volumetric productivity in the PBSF system increased by 16.6 and 12.5%, respectively. Though the concentration of free cells decreased sharply, lactic acid production remained stable in five consecutive fed-batch runs using the PBSF system. pH gradients, immobilized cell concentration and mass diffusion in the packed bed were all affected by the recirculation rate of the culture broth. Maximum lactic acid production, productivity and yield occurred at a recirculation rate of 50 mL min−1.  相似文献   

19.
Summary Cheese whey ultrafiltrate (WU) was used as the carbon source for the production of lactic acid by batch fermentation with Lactobacillus helveticus strain milano. The fermentation was conducted in a 400 ml fermentor at an agitation rate of 200 rpm and under conditions of controlled temperature (42° C) and pH. In the whey ultrafiltrate-corn steep liquor (WU-CSL) medium, the optimal pH for fermentation was 5.9. Inoculum propagated in skim milk (SM) medium or in lactose synthetic (LS) medium resulted in the best performance in fermentation (in terms of growth, lactic acid production, lactic acid yield and maximum productivity of lactic acid), as compared to that propagated in glucose synthetic (GS) medium. The yeast extract ultrafiltrate (YEU) used as the nitrogen/growth factor source in the WU medium at 1.5% (w/v) gave the highest maximum productivity of lactic acid of 2.70 g/l-h, as compared to the CSL and the tryptone ultrafiltrate (TU). L. helveticus is more advantageous than Streptococcus thermophilus and Lactobacillus delbrueckii for the production of lactic acid from WU. The L. helveticus process will provide an alternative solution to the phage contamination in dairy industries using Lactobacillus bulgaricus.  相似文献   

20.
Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142 g/L with production yield of 0.89 g/g and productivity of 3.55 g L−1 h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号