首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang HM  Zhang LW  Liu WC  Cheng J  Si XM  Ren J 《Cytotherapy》2006,8(6):580-588
BACKGROUND: DC vaccination with the use of tumor cells provides the potential to generate a polyclonal immune response to multiple known and unknown tumor Ag. Our study comparatively analyzed DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma (HCC). METHODS: Immature DC generated from PBMC of patients with HCC were fused with HepG2-GFP (HepG2 cell line transfected stably with plasmid pEGFP-C3) cells or transfected with their total RNA. Matured DC were used to stimulate autologous T cells, and the resultant Ag-specific effector T cells were analyzed by IFN-gamma ELISPOT assay. RESULTS: DC were capable of further differentiation into mature DC after fusion with HepG2-GFP cells or transfection with HepG2-GFP cell total RNA, and were able to elicit specific T-cell responses in vitro. Both methods of Ag loading could result in stimulating CD4+ and CD8+ T cells, but with the indication that fusion loading was more efficient than RNA loading in priming the Th1 response, while RNA loading was more effective in CTL priming. DISCUSSION: Our results indicate that DC fused with tumor cells or transfected with tumor total RNA represent promising strategies for the development of cancer vaccines for treatment of HCC. They may have potential as an adjuvant immunotherapy for patients with HCC.  相似文献   

2.
Zhang HM  Zhang LW  Ren J  Fan L  Si XM  Liu WC 《Cellular immunology》2006,239(2):144-150
alpha-Fetoprotein (AFP) may be a possible target for a hepatocellular carcinoma (HCC)-specific vaccination. But some studies have demonstrated that dendritic cells (DCs) treated with AFP become dysfunctional. So in this study, we try to transfect AFP mRNA into DCs and observe the ability of DCs to induce AFP-specific CD4(+) and CD8(+) T cells. We hope that AFP can be processed and presented by DCs directly, rather than released to the cultures. So there will be no AFP negative effect on the function of DCs. In the study, immature DCs generated from peripheral blood mononuclear cells (PBMCs) of HLA-A2(+) HCC patients were transfected with AFP mRNA. Then the transfected, matured DCs were used to stimulate autologous T cells. The results showed that the expressions of membrane molecules of DCs after transfection were increased dramatically, and interleukin-12 (IL-12) p70 release in the supernatant was elevated significantly. There was only a minority of AFP release in the supernatants of transfected DCs. CTLs induced by the transfected DCs recognized HLA-matched AFP positive HepG2 cell line specifically and the AFP-specific proliferative T-cell responses could also be induced. These findings indicate that this AFP mRNA transfection strategy could generate fully functional DCs, which could induce specific T cells to recognize AFP(+) HCC cells.  相似文献   

3.
The choice of the tumor antigen preparation used for dendritic cell (DC) loading is important for optimizing DC vaccines. In the present study, we compared DCs pulsed with hepatocellular carcinoma (HCC) total RNA or cell lysates for their capacity to activate T cells. We showed here that HCC total RNA pulsed-DCs induced effector T lymphocyte responses which showed higher killing ability to HCC cell lines, as well as higher frequency of IFN-γ producing of CD4+ and CD8+ T cells when compared with lysate pulsed-DCs. Both of RNA and lysate loading did not influence the changes of mature DC phenotype and the capacity of inducing T cell proliferation. However, HCC lysate loading significantly inhibited the production of inflammatory cytokines IL-12p70, IFN-γ and enhanced the secretion of anti-inflammatory cytokines IL-10 of mature DCs. Our results indicated that DCs loaded with HCC RNA are superior to that loaded with lysate in priming anti-HCC CTL response, suggesting that total RNA may be a better choice for DCs-based HCC immunotherapy.  相似文献   

4.
Fusions of patient-derived dendritic cells (DCs) and autologous tumor cells induce T-cell responses against autologous tumors in animal models and human clinical trials. These fusion cells require patient-derived tumor cells, which are not, however, always available. Here we fused autologous DCs from patients with hepatocellular carcinoma (HCC) to an allogeneic HCC cell line (HepG2). These fusion cells co-expressed tumor-associated antigens (TAAs) and DC-derived costimulatory and MHC molecules. Both CD4+ and CD8+ T cells were activated by the fusion cells. Cytotoxic T lymphocytes (CTLs) induced by the fusion cells were able to kill autologous HCC by HLA-A2- and/or HLA-A24-restricted mechanisms. CTL activity against shared TAAs indicates that the presence of alloantigens does not prevent the development of CTLs with activity against autologous HCC cells. These fusion cells may have applications in anti-tumor immunotherapy through cross-priming against shared tumor antigens and may provide a platform for adoptive immunotherapy.  相似文献   

5.
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.  相似文献   

6.
Dendritic cells (DCs) are one of the most potent antigen-presenting cells (APCs) capable of activating immune responses. Different forms of tumor antigens have been used to load DCs to initiate tumor-specific immune responses. Heat shock proteins (HSPs) are considered natural adjuvants which have the ability to chaperone peptides associated with them presented efficiently by interaction with professional APCs through specific receptors. In the present study, we used HSP, gp96-peptide complexes, derived from human hepatocellular carcinoma (HCC) cells as antigens for pulsing DCs. We found that gp96-peptide complexes derived from HCC cells induced the maturation of DCs by enhancing expression of human leukocyte antigen class II, CD80, CD86, CD40, and CD83. The matured DCs stimulated a high level of autologous T cell proliferation and induced HCC specific cytotoxic T lymphocytes, which specifically killed HCC cells by a major histocompatability complex (MHC) class I restricted mechanism. These findings demonstrate that DCs pulsed with gp96-peptide complexes derived from HCC cells are effective in activating specific T cell responses against HCC cells.  相似文献   

7.
Hepatocellular carcinoma (HCC) and colorectal carcinoma with hepatic metastases (mCRC) are cancers with poor prognosis and limited therapeutic options. New approaches are needed and adoptive immunotherapy with Vγ9Vδ2 T lymphocytes represents an attractive strategy. Indeed, Vγ9Vδ2 T cells were shown to exhibit efficient lytic activity against various human tumor cell lines, and in vitro Vγ9Vδ2 T expansion protocol based on single phosphoantigen stimulation could be easily performed for healthy donors. However, a low proliferative response of Vγ9Vδ2 T cells was observed in about half of the cancer patients, leading to an important limitation in the development of Vγ9Vδ2 T cell-based immunotherapy. Here, for the first time in the context of cancer patients, Vγ9Vδ2 T cell expansions were performed by co-culturing peripheral blood mononuclear cell (PBMCs) with autologous dendritic cells (DCs) pretreated with aminobisphosphonate zoledronate. For patients not responding to the conventional culture protocol, co-culture of PBMC with zoledronate-pretreated DCs induced strong cell expansion and allowed reaching a minimal rate of purity of 70% of Vγ9Vδ2 T cells. The potent immunostimulatory activity of zoledronate-treated DCs was associated with higher amount of isopentenyl pyrophosphate (IPP) in the culture and was correlated with better ability to activate Vγ9Vδ2 T cells as measured by IFN-γ production. Moreover, we demonstrated that the cytotoxic level of Vγ9Vδ2 T cells against freshly autologous tumor cells isolated from patients could be significantly increased by pretreating the tumor cells with zoledronate. Thus, this method of generating Vγ9Vδ2 T cells leads eligible for Vγ9Vδ2 T cell adoptive immunotherapy the HCC and mCRC patients.  相似文献   

8.
Involvement of tumor-Ag specific CD4(+) and CD8(+) T cells could be critical in the generation of an effective immunotherapy for cancer. In an attempt to optimize the T cell response against defined tumor Ags, we previously developed a method allowing transgene expression in human dendritic cells (DCs) using retroviral vectors. One advantage of using gene-modified DCs is the potential ability to generate CD8(+) T cells against multiple class I-restricted epitopes within the Ag, thereby eliciting a broad antitumor immune response. To test this, we generated tumor-reactive CD8(+) T cells with DCs transduced with the melanoma Ag gp100, for which a number of HLA-A2-restricted epitopes have been described. Using gp100-transduced DCs, we were indeed able to raise T cells recognizing three distinct HLA-A2 epitopes within the Ag, gp100(154-162), gp100(209-217), and gp100(280-288). We next tested the ability of transduced DCs to raise class II-restricted CD4(+) T cells. Interestingly, stimulation with gp100-transduced DCs resulted in the generation of CD4(+) T cells specific for a novel HLA-DRbeta1*0701-restricted epitope of gp100. The minimal determinant of this epitope was defined as gp100(174-190) (TGRAMLGTHTMEVTVYH). These observations suggest that retrovirally transduced DCs have the capacity to present multiple MHC class I- and class II-restricted peptides derived from a tumor Ag, thereby eliciting a robust immune response against that Ag.  相似文献   

9.
We have developed an individualized melanoma vaccine based on autologous dendritic cells (DCs) transfected with autologous tumor-mRNA. The vaccine targets the unique spectrum of tumor antigens in each patient and may recruit multiple T cell clones. In a recent phase I/II trial, we demonstrated T cell responses against vaccine antigens in 9/19 patients evaluable by T cell assays. Here, we report a follow-up study that was conducted to characterize interesting T cell responses and to investigate the effects of long-term booster vaccination. Two patients were selected for continued vaccine therapy. The clinical follow-up suggested a favorable clinical development in both patients. The immunological data (T cell proliferation/IFNgamma ELISPOT/Bioplex cytokine assays) indicated sustained T cell responses and suggested an enhancing effect of booster vaccinations. Both CD4(+) and CD8(+) T cell responses were demonstrated. From post-vaccination samples, we generated 39 T cell clones that responded specifically to stimulation by mRNA-transfected DCs and 12 clones that responded to mock-transfected DCs. These data clearly indicate a two-component vaccine response, against transfected and non-transfected antigens. T cell receptor (TCR) clonotype mapping, performed on 11 tDC-specific clones, demonstrated that 10/11 clones had different TCRs. The results thus indicate a broad spectrum T cell response against antigens encoded by the transfected tumor-mRNA. We generally observed mixed Th1/Th2 cytokine profiles, even in T cell clones that were confirmed to be derived from a single cell. This finding suggests that cytokine patterns after cancer vaccination may be more complex than indicated by the classic Th1/Th2 dichotomy.  相似文献   

10.
MicroRNAs are small non‐coding RNA molecules that play essential roles in biological processes ranging from cell cycle to cell migration and invasion. Accumulating evidence suggests that miR‐34a, as a key mediator of p53 tumor suppression, is aberrantly expressed in human cancers. In the present study, we aimed to explore the precise biological role of miR‐34a and the global protein changes in HCC cell line HepG2 cells transiently transfected with miR‐34a. Transfection of miR‐34a into HepG2 cells caused suppression of cell proliferation, inhibition of cell migration and invasion. It also induced an accumulation of HepG2 cells in G1 phase. Among 116 protein spots with differential expression separated by 2‐DE method, 34 proteins were successfully identified by MALDI‐TOF/TOF analysis. Of these, 15 downregulated proteins may be downstream targets of miR‐34a. Bioinformatics analysis produced a protein–protein interaction network, which revealed that the p53 signaling pathway and cell cycle pathway were two major hubs containing most of the proteins regulated by miR‐34a. Cytoskeletal proteins such as LMNA, GFAP, MACF1, ALDH2, and LOC100129335 are potential targets of miR‐34a. In conclusion, abrogation of miR‐34a function could cause downstream molecules to switch on or off, leading to HCC development.  相似文献   

11.
miR-101 is considered to play an important role in hepato-cellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while down-regulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment.  相似文献   

12.
BACKGROUND: Dendritic cells (DCs) are the most potent antigen-presenting cells in initiating primary immune responses. Given the unique properties of DCs, gene-modified DCs represent a particularly attractive approach for immunotherapy of diseases such as cancer. METHODS: Gene-modified DCs were obtained by a receptor-mediated gene delivery system using adenovirus (Ad) particles as ligand and RNA or DNA condensed by polyethylenimine (PEI). In vitro transcribed polyadenylated or non-polyadenylated RNA was used. RNA-transduced DCs were generated expressing chicken ovalbumin (OVA) or chimeric constructs thereof, and compared with DNA-transduced DCs. RESULTS: Ad/PEI transfection complexes efficiently delivered RNA into DCs. Such RNA-transduced DCs induced OVA-specific T cell responses more effectively than DNA-transduced DCs. Furthermore, DCs transduced with polyadenylated RNA were more potent in stimulating CD4(+) and CD8(+) T cell responses than DCs transduced with non-polyadenylated RNA and this was particularly important for CD4(+) T cell responses. CONCLUSIONS: Ad/PEI/RNA transfection is an efficient means for generating RNA-transduced DCs and for stimulating antigen-specific T cell responses. Polyadenylation of RNA enhances CD8(+) T cell responses and is essential for CD4(+) T cell responses.  相似文献   

13.
For cancer immunotherapy the loading of dendritic cells (DCs) with whole tumor cell lysate preparations represents a simple and promising approach for presentation of tumor-associated antigens (TAAs), avoiding the disadvantages of HLA-matching and definition of TAAs. The aim of this study was to investigate whether lysate-pulsed DCs efficiently cross-prime CD8+ T cells and induce a strong T(H)1 cell response, as compared to DCs pulsed with specific peptides (FLU M1 and Melan-A/Mart-1). As a model system breast carcinoma cell lysate from either MCF-7 or MDA-MB-231 cell lines (both HLA-A*0201+) expressing the TAA MUC1 were selected. Both cell lines expressed MUC1, the epithelial mucin, which is a large molecular weight O-glycosylated protein expressed in the majority of breast, ovarian, and other epithelial malignancies and is under evaluation as a target antigen in cancer immunotherapy. We developed a simple lysate preparation method to solubilize all cell proteins without degradation. For loading of monocyte-derived dendritic cells, 100 microgmL(-1) of breast carcinoma cell lysate was used, accompanied by an adjuvant consisting of tumor necrosis factor-alpha (TNF-alpha) and prostaglandin-E2. T cells were co-cultivated with lysate or peptide pulsed DCs and were restimulated weekly. Before cultivation, and after the 3rd stimulation, tetramer frequencies for the MUC1 epitopes M1.2 and F7 as well as for the FLU M1 and Melan-A/Mart-1 epitopes were determined. After stimulation with lysate, higher frequencies for M1.2-specific T cells were observed compared with the F7 epitope. Furthermore, we found expansion factors for M1.2-specific T cells that had been stimulated with MCF-7 lysate-pulsed DCs of up to 43-fold. The analysis of typical T(H)1/T(H)2 cytokines (IFN-gamma, TNF-alpha, IL-12p70, IL-2, IL-4, IL-5, and IL-10) revealed a strong T(H)1 response. These results provide evidence for a strong T(H)1 polarization and cross-priming of MUC1-specific CD8+ T cells and demonstrate the feasibility of using lysate-pulsed dendritic cells in breast cancer immunotherapy.  相似文献   

14.
15.
目的体外制备和增殖烟曲霉特异性T淋巴细胞。方法从健康志愿者外周抗凝血中分离并体外扩增DC,利用加热灭活的烟曲霉孢子作为抗原,体外共孵育制备烟曲霉孢子负载的DC,进一步将此成熟DC与源自同一个体的去除了DC细胞的外周血细胞共培养,体外诱导并扩增烟曲霉特异性T淋巴细胞。应用ELISPOT(酶联免疫斑点)技术检测活化T细胞IFN-γ的分泌情况,流式细胞仪检测细胞因子胞内合成情况,并分析功能细胞的类型和比例。结果 ELISPOT分析显示:PBMC+DC+Conidia实验组IFN-γ分泌(87.33±1.33/4.0×105)高于其他对照组,具有统计学意义(P0.05)。细胞因子流式细胞仪分析显示:PBMC+DC+Conidia组中,2.76%的细胞分泌IFN-γ,其中1.61%为CD4+T细胞,与各对照组相比具有统计学意义(P0.05)。获得的烟曲霉特异性T细胞可以在体外可进行大量增殖。结论本文结果显示烟曲霉孢子在体外可以作为变应原诱导产生烟曲霉特异性CD4+T细胞介导的Th1型免疫反应,为未来制备和扩增烟曲霉特异性T细胞及过继免疫治疗侵袭性曲霉病提供实验基础。  相似文献   

16.
Dendritic cell (DC)-based immunotherapy is regarded as a promising means for anti-cancer therapy. The efficiency of T cell-priming in vivo by transferred DCs should depend on their encounter with T cells. In the present study, we attempted to improve the capacity of DCs to prime T cells in vivo by genetic modification to express chemokine with a T cell-attracting property. For genetic modification of DCs, we used a recently established method to generate DCs from mouse embryonic stem cells. We generated double-transfectant DCs expressing a chemokine along with a model Ag (OVA) by sequential transfection of embryonic stem cells, and then induced differentiation to DCs. We comparatively evaluated the effect of three kinds of chemokines; secondary lymphoid tissue chemokine (SLC), monokine induced by IFN-gamma (Mig), and lymphotactin (Lptn). All three types of double transfectant DCs primed OVA-specific CTLs in vivo more efficiently than did DCs expressing only OVA, and the coexpression of SLC or Lptn was more effective than that of Mig. Immunization with DCs expressing OVA plus SLC or Mig provided protection from OVA-expressing tumor cells more potently than did immunization with OVA alone, and SLC was more effective than Mig. In contrast, coexpression of Lptn gave no additive effect on protection from the tumor. Collectively, among the three chemokines, expression of SLC was the most effective in enhancing antitumor immunity by transferred DCs in vivo. The findings provide useful information for the development of a potent DC-based cellular immunotherapy.  相似文献   

17.
In this study, we demonstrate that tumor mRNA–loaded dendritic cells can elicit a specific CD8+ cytotoxic T-lymphocyte (CTL) response against autologous tumor cells in patients with malignant glioma. CTLs from three patients expressed strong cytolytic activity against autologous glioma cells, did not lyse autologous lymphoblasts or EBV-transformed cell lines, and were variably cytotoxic against the NK-sensitive cell line K-562. Also, DCs-pulsed normal brain mRNA failed to induce cytolytic activity against autologous glioma cells, suggesting the lack of autoimmune response. Two patients' CD8+ T cells expressed a modest cytotoxicity against autologous glioma cells. CD8+ T cells isolated during these ineffective primings secreted large amounts of IL-10 and smaller amounts of IFN- as detected by ELISA. Type 2 bias in the CD8+ T-cell response accounts for the lack of cytotoxic effector function from these patients. Cytotoxicity against autologous glioma cells could be significantly inhibited by anti-HLA class I antibody. These data demonstrate that tumor mRNA–loaded DC can be an effective tool in inducing glioma-specific CD8+ CTLs able to kill autologous glioma cells in vitro. However, high levels of tumor-specific tolerance in some patients may account for a significant barrier to therapeutic vaccination. These results may have important implications for the treatment of malignant glioma patients with immunotherapy. DCs transfected with total tumor RNA may represent a method for inducing immune responses against the entire repertoire of glioma antigens.  相似文献   

18.
Cyr61/CCN1 is a secreted extracellular matrix associated protein involved in diverse biological functions and plays multiple roles in tumorigenesis. Cyr61 was down-regulated in HCC tumor tissues as observed in our previous cDNA microarray study, but its potential role in hepatocarcinogenesis is still unclear. To explore the biological significance of Cyr61 in HCC development, over-expression of this gene was established in HCC cell lines and its effects on cell proliferation, adhesion, migration and invasion were analyzed in this study. Cyr61 expression was down-regulated in HCC tumors as measured by quantitative real-time PCR and its protein level was decreased in most HCC cell lines as detected by Western blot. Over-expression of Cyr61 in HCC cell lines suppressed cell proliferation in monolayer and anchorage-independent growth in soft agar, whereas down-regulation of Cyr61 by siRNA increased cell proliferation rate. Over-expression of Cyr61 also significantly enhanced adhesion activities of HepG2 cells to various ECM proteins. Moreover, stably transfected HepG2-Cyr61 cells showed inhibited cell mobility (40-45%) and reduced invasiveness (30-40%) compared to HepG2-Neo controls. Furthermore, upon exposure to 5-Fluorouracil and UV irradiation, Cyr61 was rapidly induced in both p53(+/+) HepG2 and p53(-/-) Hep3B cells. However, only HepG2 cells showed increased G2/M phase arrest with concomitant up-regulation in p53 and p21 levels, suggesting that Cyr61 may play an active role in regulating HCC cell growth involving p53 as well as alternative pathways. In conclusion, we demonstrated that Cyr61 is a tumor suppressor in hepatocarcinogenesis and is involved in DNA damage response.  相似文献   

19.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

20.
Immunotherapy is being proposed to treat patients with hepatocellular carcinoma (HCC). However, more detailed knowledge on tumor Ag expression and specific immune cells is required for the preparation of highly targeted vaccines. HCC express a variety of tumor-specific Ags, raising the question whether CTL specific for such Ags exist in HCC patients. Indeed, a recent study revealed CTLs specific for two cancer-testis (CT) Ags (MAGE-A1 and MAGE-A3) in tumor infiltrating lymphocytes of HCC patients. Here we assessed the presence of T cells specific for additional CT Ags: MAGE-A10, SSX-2, NY-ESO-1, and LAGE-1, which are naturally immunogenic as demonstrated in HLA-A2(+) melanoma patients. In two of six HLA-A2(+) HCC patients, we found that MAGE-A10- and/or SSX-2-specific CD8(+) T cells naturally responded to the disease, because they were enriched in tumor lesions but not in nontumoral liver. Isolated T cells specifically and strongly killed tumor cells in vitro, providing evidence that these CTL were selected in vivo for high avidity Ag recognition. Therefore, besides melanoma, HCC is the second solid human tumor with clear evidence for in vivo tumor recognition by T cells, providing the rational for specific immunotherapy, based on immunization with CT Ags such as MAGE-A10 and SSX-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号