首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We report the first direct measurements of perialveolar interstitial pressures in lungs inflated with negative pleural pressure. In eight experiments, we varied surrounding (pleural) pressure in a dog lung lobe to maintain constant inflation with either positive alveolar and ambient atmospheric pleural pressures (positive inflation) or ambient atmospheric alveolar and negative pleural pressures (negative inflation). Throughout, vascular pressure was approximately 4 cmH2O above pleural pressure. By the micropuncture servo-null technique we recorded interstitial pressures at alveolar junctions (Pjct) and in the perimicrovascular adventitia (Padv). At transpulmonary pressure of 7 cmH2O (n = 4), the difference of Pjct and Pady from pleural pressure of 0.9 +/- 0.4 and -1.1 +/- 0.2 cmH2O, respectively, during positive inflation did not significantly change (P less than 0.05) after negative inflation. After increase of transpulmonary pressure from 7 to 15 cmH2O (n = 4), the decrease of Pjct by 3.3 +/- 0.3 cmH2O and Pady by 2.0 +/- 0.4 cmH2O during positive inflation did not change during negative inflation. The Pjct-Pady gradient was not affected by the mode of inflation. Our measurements indicate that, in lung, when all pressures are referred to pleural or alveolar pressure, the mode of inflation does not affect perialveolar interstitial pressures.  相似文献   

4.
We determined the effect of flow direction on the relationship between driving pressure and gas flow through a collaterally ventilating lung segment in excised cranial and caudal dog lung lobes. He, N2, and SF6 were passed through the lung segment distal to a catheter wedged in a peripheral airway. Gases were pushed through the segment by raising segment pressure (Ps) relative to airway opening pressure (Pao) and pulled from the segment by ventilating the lobe with the test gas, then lowering Ps relative to Pao. Driving pressures (Ps - Pao) between 0.25 and 2 cmH2O were evaluated at Pao values of 5, 10, and 15 cmH2O. Results were similar in cranial and caudal lobes. Flow increased as Ps - Pao increased and was greatest at Pao = 15 cmH2O for the least-dense gas (He). Although flow direction was not a significant first-order effect, there was significant interaction between volume, driving pressure, and flow direction. Dimensional analysis suggested that, although flow direction had no effect at Pao = 10 and 15 cmH2O, at Pao = 5 cmH2O, raising Ps relative to Pao increased the characteristic dimension of the flow pathways, and reducing Ps relative to Pao reduced the dimension. These data suggest that at large lobe volumes, airways (including collateral pathways) within the segment are maximally dilated and the stiffness of the parenchyma prevents any significant distortion when Ps is altered. At low lobe volumes, these pathways are affected by changes in transmural pressure due to the increased airway and parenchymal compliance.  相似文献   

5.
6.
7.
8.
Previous studies have shown that a shift in blood flow away from edematous regions does not occur until the alveoli contain liquid. The present experiments were designed to examine the separate effect of air space liquid, air space plus interstitial liquid, and reduced lung volume on blood flow. We found that reduced lung volume was not associated with significant changes in blood flow and that no systematic change in blood flow occurred when alveoli were filled with isosmotic liquid (autologous plasma). However, when hyposmotic liquid (dilute plasma) was instilled so that both the air space and the alveolar wall interstitial space were filled, blood flow was systematically reduced. This suggested that interstitial liquid was responsible raising vascular resistance in these experiments and that it might also be important in raising local vascular resistance in pulmonary edema. This latter hypothesis was tested in isolated perfused lobes where rapid freezing and quantitative histology showed that the number of open capillaries was significantly reduced in the liquid-filled alveoli (P less than 0.001). These observations suggest that interstitial pressure rises in pulmonary edema with the result that the transmural pressure of the alveolar vessels falls and vascular resistance is increased.  相似文献   

9.
10.
Venous occlusion capillary pressures (Pcv) were simultaneously compared with isogravimetric capillary pressures (PcI) in the same isolated perfused dog lung preparations. For 26 determinations, PcI averaged 1.23 +/- 0.22 (SE) mmHg higher than Pcv. However, the two measurements of capillary pressure were highly correlated (r = 0.99), and the following regression equation was obtained: Pcv = 1.12 PcI - 2.1. Pcv could be easily measured several times in the same preparation, either by total venous occlusion or regional venous occlusion using a Swan-Ganz balloon catheter. In addition, Pcv did not require an isogravimetric state for its determination. These data suggest that the major sites of filtration and vascular capacitance in the pulmonary circulation reside in the microvessels and that the more easily determined Pcv is an adequate measure of the average capillary filtration pressure in the lungs.  相似文献   

11.
12.
We measured the flow rate (QLV) from cannulated lung lymph vessels in anesthetized dogs. Low-resistance lymph cannulas were used and the vessels were cannulated at the lung hilus. When we increased left atrial pressure to 42.9 +/- 5.7 (SD) cmH2O (base line = 6.6 +/- 4.6 cmH2O), the lungs became edematous and QLV increased from a base line of 20.4 +/- 21.5 microliters/min to 388 +/- 185 microliters/min. QLV plateaued at the higher level. We also measured the relationship between lymph flow rate and the height of the outflow end of the lymph cannula. From this relationship, determined at the end of the period of elevated left atrial pressure, we calculated the effective resistance and pressure driving lymph from the lungs. We also cannulated lymph vessels in the downstream direction and estimated the effective resistance and pressure opposing flow into the part of the lymphatic system between the lung hilus and the veins (extrapulmonary lymph vessels). We found that the effective resistance of the extrapulmonary part of the lymph system (0.042 +/- 0.030 (SD) cmH2O X min X microliter-1) was large compared with the resistance of the lymph vessels from the lungs (0.026 +/- 0.027). These data indicate that the resistance of the extrapulmonary part of the lung lymph system limits the maximum flow of lymph from edematous lungs.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
We studied collateral flow resistance in exsanguinated, excised lower lobes and accessory lobes of dog and horse lungs, respectively. A double lumen catheter obstructed a peripheral airway isolating a segment of the lobe. Oxygen flowed into the segment via a rotameter which measured flow (Vcoll) while the inner catheter recorded segment pressure (Ps). Gas delivered into the segment flowed out via collateral channels. Collateral flow resistance was calculated as (Ps - PL)/Vcoll, where PL = static transpulmonary pressure. Rcoll at PL = 20, 10, and 5 cm H2O averaged 0.24, 1.25, and 2.65 cmH2O.ml-1.s, respectively, in the dog, and 4.53, 6.00, and 12.62 cmH2O.ml-1.s in the horse. At a given PL, Rcoll measured during inflation. At constant PL, Rcoll increased with time at PL = 5 and 10 cmH2O, but was not time dependent at PL = 20 cmH2O. At constant PL, Rcoll increased at Vcoll increased. We conclude Rcoll is greater in horses than in dogs and is a function of PL, Ps - PL, and lung volume history in both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号