首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants.  相似文献   

2.
A growth analysis was made of ultraviolet-B (UV-B)-sensitive (Poinsett) and insensitive (Ashley) cultivars of Cucuumis satives L. grown in growth chambers at 600 μmol m−2 s−1 of photosynthetic photon flux (PPF) provided by red- and far-red-deficient metal halide (MH) or blue- and UV-A-deficient high pressure sodium/deluxe f HPS/DX) lamps. Plants were irradiated 6 h daiiy with 0.2 f-UV-B) or 18.2 C+UV-B) kJ m−2 day−1 of biologically effective UV-B for 8 or 15 days from time of seeding. In general, plants given supplemental UV-B for 15 days showed lower leaf area ratio (LARs, and higher specific leaf mass (SLM) mean relative growth rate (MRGR) and net assimilation rate (NAR) than that of control plants, but they showed no difference in leaf mass ratio (LMR), Plants grown under HPS/DX lamps vs MH lamps showed higher SLM and NAR. lower LAR and LMR. hut no difference in MRGR. LMR was the only growth parameter affected by cultivar: at 15 days, it was slightly greater in Poinsett than in Ashley. There were no interactive effects of UV-B. PPF source or cultivar on any of the growth parameters determined, indicating that the choice of either HPS/DX or MH lamps should not affect growth response to UV-B radiation. This was true even though leaves of UV-B-irradiated plants grown under HPS/DX lamps have been shown to have greater chlorosis than those grown under MH lamps.  相似文献   

3.
UV-B-sensitive (Poinsett) and -insensitive (Ashley) cultivars of cucumber ( Cucumis sativus L.) were grown in growth chambers at 600 μmol m−2s−1 of photosynthetically active radiation provided by metal halide (MH) or high pressure sodium/deluxe (HPS/DX) lamps. Plants were irradiated 15 days from seeding for 6 h per day under 18. 2 kJ m−2 day−1 of biologically effective UV-B (UV-BBE) radiation. One of the most pronounced effects of UV-B was a 27 to 78% increase in phenylalanine ammonialyase (PAL) activity. UV-B also increased total polyamines. Catalase and superoxide dismutase varied greatly in their response to UV-B. There were no interactive effects on PAL or catalase activity, or total polyamines. There was a UV × PAR source interaction for superoxide dismutase activity. UV-B increased chlorosis and decreased height, dry weight and leaf area. Stem elongation, biomass production, leaf enlargement and chlorosis were greater under HPS/DX lamps than under MH lamps. Chlorosis was greater in Poinsett than in Ashley and in lower leaves than in upper ones. Aside from chlorosis, there were no interactive effects of UV-B, PAR source or cultivar on any of the growth parameters measured, suggesting that the growth response of cucumber seedlings to UV-B is unaffected by PAR source or cultivar. Similarly, except for SOD activity, the biochemical response to UV-B was also not influenced by PAR source or cultivar.  相似文献   

4.
In vitro shoots of cv. Doyenne ďHiver pear ( Pyrus communis L.) were irradiated under controlled environments for 6 h per day at 5 different levels of biologically effective UV-B radiation (UV-BBE). UV-B exposure caused a progressive increase in apical necrosis above background levels and stimulated leaf abscission. Shoots grown for 2 weeks at 7. 8 mol m−2 day −1 of photosynthetic photon flux (PPF) and treated with 8. 4 or 12. 0 kJ m−2 day −1 UV-BBE produced up to 4 times more ethylene than those given 2. 2 or 5. 1 kJ m−2 day−1 UV-BBE or untreated controls. Exposure of shoots to 12 kJ m−2 day −1 of UV-BBE caused an increase in free putreseine content after 4 to 14 days of irradiation. Shoots showed a decrease in CO2 uptake after 3 days of UV-B: thereafter, they appeared to recover their photosynthetic capacity. Under typical PPF conditions used in micropropagation (90 μmol m−2 S−1). 8. 4 kJ m−2 day −1 of UV-B radiation was injurious to realatively tender tissues of in vitro pear shoots: increasing the level of UV-BBE to 12 kJ m−2 day−1 produced even more adverse effects.  相似文献   

5.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

6.
Cucumber ( Cucumis sativus L.) cultivars Marketmore, Lama, XPH 1187, XPH 1484 and Sprint 440 (N) were grown in a greenhouse under two levels of biologically effective ultraviolet-B ( UV -B) radiation (daily dose: 0 and 11.6 kJ m−2 UV-BBE) for 31 days. Significant intraspecific differences were observed in plant height, number of leaves, leaf area and total dry weight. Based upon total biomass accumulation, Marketmore was found to be the most tolerant, and XPH 1484 the most sensitive to UV-B radiation. The dose response of accumulation of UV absorbing compounds (measured as absorbance of methanolic extracts) in leaf tissues showed an increase in UV absorbing compounds with UV-B dose in Marketmore, Sprint 440 (N) and XPH 1187. In Lama and XPH 1484, however, doses below 8.7 kJ m−2 UV-BBE produced no change in UV absorbing compounds. This study suggests that intraspecific differences in UV-B radiation sensitivity in cucumber may be related to inherent differences in the accumulation of UV absorbing compounds in leaves.  相似文献   

7.
Effects of salinity and phosphate on ion distribution in lupin leaflets   总被引:1,自引:0,他引:1  
Lupin ( Lupinus luteus L. cv. Weiko III) were grown in nutrient solution over a range of inorganic phosphate (Pi) concentrations, with or without 50 m M NaCl. Plants with high Pi (2 m M ) and salt showed progressive leaf necrosis and had higher concentrations of total phosphate than plants grown with high Pi alone. Most of the extra total phosphate in salt treated plants was in the Pi form. Pi supply did not influence Na+, K+ or Cl concentrations in epidermal vacuoles or mesophyll cells. However, epidermal vacuoles accumulated more monovalent cations (Na+ and K+) than Cl, and in vacuoles of plants grown with 0.1 m M Pi additional Pi was accumulated, possibly to maintain charge balance. Plants grown with 2 m M Pi did not accumulate additional Pi in epidermal vacuoles, but showed higher phosphorus levels in cell walls. It is suggested that at moderate phosphorus concentrations Pi plays a role in epidermal osmotic adjustment, possibly explaining the beneficial role of additional phosphorus on salt stressed plants. At high Pi supply with salt, Pi does not contribute to osmotic adjustment and instead accumulates in cell walls. However, the cause of leaf damage under conditions of high phosphorus supply and salinity is still not entirely clear.  相似文献   

8.
Response of 19 cultivars of soybeans to ultraviolet-B irradiance   总被引:4,自引:0,他引:4  
Nineteen soybean cultivars were grown for four weeks in controlled environmental chambers with artificial daylight supplemented by five UV-B irradiance regimes to determine the range of growth and development responses of seedlings. Data from nine plant characteristics were assessed: leaf area, dry weight of leaves, stems and roots, total plant dry weight, height, ratio of roots to shoots and leaf area to weight and rating of leaves for damage. Significant differences were observed in the responses noted. Stunting, leaf chlorosis and loss of apical dominance were three general symptoms apparent on all cultivars which received UV-B irradiance. Varying degrees of reduced leaf area and dry weight of the plants and altered ratios of weights of leaves per unit area and weight of roots to shoots were also found. It was concluded that different soybean cultivars demonstrate a marked difference in sensitivity to UV-B radiation under the artificial conditions of controlled environmental growth chambers and this may indicate a genetic basis for variability in sensitivity of soybean cultivars to this waveband. However, the sensitivity to UV-B radiation was increased by the lower than normal photon fluence of photosynthetically active radiation (225 μE m−2 s−1).  相似文献   

9.
An experiment was conducted in sunlit controlled environment growth chambers to determine the physiological mechanisms of fruit abscission of cotton ( Gossypium hirsutum L. cv. NuCOTN 33B) grown in high temperature and enhanced ultraviolet (UV)-B radiation. Six treatments included two levels of optimum (30/22°C) and high (36/28°C) day/night temperatures and three levels of biologically effective UV-B radiation (0, 7, and 14 kJ m−2 per day). Both the temperature and UV-B treatments were imposed from seedling emergence through 79 days after emergence (DAE). High temperature did not negatively affect either leaf net photosynthetic rates (Pn) or abscission of cotton squares (floral buds with bracts) but significantly decreased boll retention. Plants exposed to 7 kJ UV-B radiation retained 56% less bolls than the 0 kJ UV-B control plants at 79 DAE, despite no significant differences in leaf Pn measured at squaring and flowering. At 53 DAE, leaf Pn of plants grown in high UV-B radiation (14 kJ m−2 per day) decreased by 11%, whereas total non-structural carbohydrate (TNC) concentrations in the leaves, floral buds, and young bolls decreased by 34, 32, and 20%, respectively, compared with the control plants. The high UV-B radiation significantly increased square abscission. Square abscission was not related to leaf TNC concentration but closely correlated with TNC in floral buds ( r  = −0.68, P  < 0.001). Young boll abscission was highly correlated with TNC concentrations in both the leaves ( r  = −0.40, P  < 0.01) and the bolls ( r  = −0.80, P  < 0.001). Our results indicate that non-structural carbohydrate limitation in reproductive parts was a major factor associated with fruit abscission of cotton grown under high temperature and enhanced UV-B radiation conditions.  相似文献   

10.
Broad-band UV-B radiation inhibited hypocotyl elongation in etiolated tomato ( Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings. This inhibition could be elicited by < 3 μmol m−2 s−1 of UV-B radiation provided against a background of white light (> 620 μmol m−2 s−1 between 320 and 800 nm), and was similar in wild-type and phytochrome-1-deficient aurea mutant seedlings. These observations suggest that the effect of UV-B radiation is not mediated by phytochrome. An activity spectrum obtained by delivering 1 μmol m−2 s−1 of monochromatic UV radiation against a while light background (63 μmol m−2 s−1 showed maximum effectiveness around 300 nm, which suggests that DNA or aromatic residues in proteins are not the chromophores mediating UV-B induced inhibition of elongation. Chemicals that affect the normal (photo)chemistry of flavins and possibly pterins (KI, NaN, and phenylacetic acid) largely abolished the inhibitor) effect of broad-hand UV-B radiation when applied to the root zone before irradiation. KI was effective at concentrations < 10−4 M , which have been shown in vitro to be effective in quenching the triplet excited stales of flavins but not fluorescence from pterine or singlet states of flavins. Elimination of blue light or reduction of UV-A, two sources of flavin excitation, promoted hypocotyl elongation, but did not affect the inhibition of elongation evened by UV-B. Kl applied after UV-B irradiation had no effect on the inhibition response. Taken together these findings suggest that the chromophore of the photoreceptor system invoked in UV-B perception by tomato seedlings during de-etiolation may be a flavin.  相似文献   

11.
Experiments were conducted under greenhouse conditions to investigate the effects of enhanced UV-B radiation (280 to 320 nm) on height, fresh and dry weights, leaf chlorophyll and carotenoids, CO2 uptake rates, and Hill activity in soybean ( Glycine max L. cv. Bragg). Plants were exposed for 6 h continuously from midmorning to midafternoon each day to UV-B radiation which was provided by Westinghouse FS-40 sun lamps filtered with 0.127-mm cellulose acetate film (UV-B enhanced) or 0.127-mm Mylar S film (UV-B Mylar control). Three different UV-B enhanced radiation levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-B sun equivalent units (UV-Bsec) where 1 UV-Bsec= 15.98 mW·m−2 of solar UV-B obtained by applying EXP -[(α-265)/21]2, a weighting function that simulates the DNA absorption spectrum, to the UV-B lamp systems. These UV-B levels correspond to a calculated decrease in stratospheric ozone content of 6%, 21%, and 36% for treatment T1, T2, and T3, respectively.
Daily exposure of soybean plants to UV-B radiation significantly decreased height, fresh and dry weights, leaf chlorophyll and carotenoid contents, and CO2 uptake rates. Leaf pigment extracted in 80% acetone from UV-B-treated soybean plants showed considerable increase in absorption in the wavelength region of 330 to 400 nm with increased UV-B radiation levels. Chloroplast preparations from leaves of T2 and T3 plants showed significant reductions in Hill reaction measurements.  相似文献   

12.
The effect of varied supply of P (2.5× 10−5 to 6× 10−4 M) and Zn (0 to 10−6 M) on uptake and concentrations of P and Zn was studied in cotton ( Gossypium hirsutum L. cv. Deltapine 15/21) grown in nutrient solution under controlled environmental conditions. At a given Zn supply, increasing levels of P had no significant effect on the concentrations of total Zn in plants. However, increasing levels of P induced or enhanced visual Zn deficiency symptoms when the Zn concentration in the nutrient solution was low. The concentrations of water-soluble Zn in roots and shoots constituted 60% of the total Zn concentrations for plants grown with low P and 30% for plants grown with high P. The concentration of water-soluble Zn in leaves, but not total Zn, was closely correlated with visual Zn deficiency symptoms, levels of chlorophyll, super oxide dismutase and membrane permeability. The critical deficiency concentration of water-soluble Zn in cotton leaves was in the range of 6 to 7 μg (g dry weight)−1 or about 1.0 μg (g fresh weight)−1. The results show that high P concentrations in plant tissue decrease the physiological availability of Zn. Water-soluble Zn in the tissue appears to be a suitable indicator for Zn nutritional status in general and phosphorus-induced Zn deficiency in particular. Also in field-grown orange trees (Citrus sinensis) visual Zn deficiency symptoms in leaves were closely related to the concentration of water-soluble Zn.  相似文献   

13.
Abstract. The objective of this study was to investigate the effects of water stress in sweet potato ( Ipomoea batatas L. [Lam] 'Georgia Jet') on biomass production and plant-water relationships in an enriched CO2 atmosphere. Plants were grown in pots containing sandy loam soil (Typic Paleudult) at two concentrations of elevated CO2 and two water regimes in open-top field chambers. During the first 12 d of water stress, leaf xylem potentials were higher in plants grown in a CO2 concentration of 438 and 666 μmol mol−1 than in plants grown at 364 μmol mol−1. The 364 μmol mol−1 CO2 grown plants had to be rewatered 2 d earlier than the high CO2-grown plants in response to water stress. For plants grown under water stress, the yield of storage roots and root: shoot ratio were greater at high CO2 than at 364 μmol mol−1; the increase, however, was not linear with increasing CO2 concentrations. In well-watered plants, biomass production and storage root yield increased at elevated CO2, and these were greater as compared to water-stressed plants grown at the same CO2 concentration.  相似文献   

14.
Long‐term salt effects on plant growth have often been related to direct ion toxicity due to the accumulation of high ion concentrations in plant tissue. This work examines the relative importance of endogenous ABA, as well as Na+ and Cl toxicity, in the inhibition of leaf growth and photosynthesis, in bean plants grown at 1, 25, 50 and 75 m M NaCl until the fruit‐bearing stage. All salt‐treated plants showed very high leaf Cl concentrations, with little difference between plants exposed to 50 or 75 m M NaCl. The 25 and 50 mM salt‐treated plants were able to successfully exclude Na+ from their leaves, and only suffered an initial decline in the rate of leaf growth. Plants exposed to 75 m M NaCl showed an increase in Na+ leaf concentrations with an accompanying decrease in growth and photosynthesis as salt exposure progressed. A high correlation was found between leaf Na+ and leaf growth. Leaf ABA significantly increased with salt supply, and was highly correlated with both leaf Na+ and leaf growth. Our results suggest that in bean plants under long‐term salt stress, leaf ABA may participate in the regulation of leaf growth, and leaf Na+ would be at least partly responsible for increased ABA levels.  相似文献   

15.
The chlorophyll content and partitioning of assimilate of bean ( Phaseolus vulgaris L. 'Pinto') plants were determined 6 days after treatment of the second internode (I2 with 5 μg of brassinosteroid (BR), a growth-promoting steroidal lactone. Plants were grown for 6 days under equal levels (90 μmol s-1 m-2) of photosynthetic photon flux density (PPFD) provided by cool white fluorescent (CWF) or incandescent (INC) lamps and equal levels of far-red (28 W m-2, 700–800 nm) radiation provided by the same INC or far-red (FR) fluorescent lamps. Brassinosteroid treatment had no appreciable effect on total biomass production but caused a decrease of 15–20% dry matter distribution in the upper portion of the shoot, a small (4%) but constant increase in dry matter in l2 and a large (11–16%) increase in dry matter in the lower portion of the shoot (especially I1). Treatment with BR increased assimilate accumulation in the primary leaves, especially under INC and FR lamps, and reduced dry matter in the trifoliate leaves. BR also caused a 16–21% reduction in total leaf area and even a greater reduction in area of the trifoliate leaves, but significantly increased specific leaf weight of the primary leaves and the first trifoliate leaf and the amount of dry matter in the lateral shoots under all radiation sources. In comparison to controls, BR treatment increased dry matter accumulation in the treated internode 3.3x under CWF and 1.6x under INC or FR. BR treatment also increased chlorophyll content in the primary leaves under all radiation sources and in the trifoliate leaves under CWF and INC lamps. These findings suggest a possible mobilization role of BR and establish the importance of adequate PPFD (and photosynthate) for maximum swelling and splitting response to brassinosteroid.  相似文献   

16.
The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [ Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m2 UV-BBE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants.  相似文献   

17.
18.
Pisum sativum cv. Guido grown under controlled environment conditions was exposed to either low or high UV-B radiation (2·2 or 9·9 kJ m–2 d–1 plant-weighted UV-B, respectively). Low or high UV-B was maintained throughout growth (LL and HH treatments, respectively) or plants were transferred between treatments when 22 d old (giving LH and HL treatments). High UV-B significantly reduced plant dry weight and significantly altered plant morphology. The growth and morphology of plants transferred from low to high UV-B were little affected, when compared with those of LL plants. By contrast, plants moved from high to low UV-B showed marked increases in growth when compared with HH plants. This contrast between HL and LH appeared to be related to the effect of UV-B on plant development. Exposure to high UV-B throughout development consistently reduced leaf areas. In fully expanded leaves there was no significant UV-B effect on cell area and reduced leaf area could be attributed to reduced cell number, suggesting effects on leaf primordia. Further reductions in the leaf area of younger leaves were the result of the slower development rate of plants grown at high UV-B, which also resulted in significant reductions in leaf number.  相似文献   

19.
The aim of this study was to investigate whether the cytoskeleton, and in particular the microtubular system, is affected by enhanced levels of ultraviolet-B (280–320 nm, 9 kJ m−2 day−1 biologically effective UV-B radiation) radiation in epidermal cells of Petunia x hybrida Vilm, isolated from leaves of plants grown under UV-B radiation and visible light. In addition, morphological changes during development were monitored. In a previous study microtubules were depolymerized and delays in the different stages of the cell cycle were found when protoplasts of Petunia were irradiated with UV-B radiation (Staxén et al. 1993. Protoplasma 173: 70–76). Thus it was of interest to ascertain whether the cytoskeleton would be similarly affected in an intact system. Assuming an effect of UV-B radiation on the microtubular system, we wished to determine whether this could be correlated to concomitant changes in leaf morphology. Plants of Petunia hybrida were grown in greenhouse conditions in the presence or absence of UV-B radiation. During the course of the experiment, samples were taken from young, expanding leaves and from older, fully expanded leaves and prepared for localization and analysis of microtubules from the adaxial epidermal cells. Morphology rather than the cytoskeleton was affected by UV radiation, despite the fact that the epidermal cytoskeleton would most likely be affected, since it is located in the cells which form the first intercepting layer for incident radiation.
Morphological changes under UV-B radiation, as compared to those under control conditions, were reflected in earlier flowering and an increase in leaf number. Cell division was thus stimulated as was also evidenced from the increased leaf area. Our results indicate that the number of stomata differentiated on a leaf area basis was not altered although the number of stomata per epidermal cell was reduced.  相似文献   

20.
We examined how anticipated changes in CO2 concentration and temperature interacted to alter plant growth, harvest characteristics and photosynthesis in two cold-adapted herbaceous perennials, alfalfa ( Medicago sativa L. cv. Arc) and orchard grass ( Dactylis glomerata L. cv. Potomac). Plants were grown at two CO2 concentrations (362 [ambient] and 717 [elevated] μmol mol−1 CO2) and four constant day/night temperatures of 15, 20, 25 and 30°C in controlled environmental chambers. Elevated CO2 significantly increased total plant biomass and protein over a wide range of temperatures in both species. Stimulation of photosynthetic rate, however, was eliminated at the highest growth temperature in M. sativa and relative stimulation of plant biomass and protein at high CO2 declined as temperature increased in both species. Lack of a synergistic effect between temperature and CO2 was unexpected since elevated CO2 reduces the amount of carbon lost via photorespiration and photorespiration increases with temperature. Differences between anticipated stimulatory effects of CO2 and temperature and whole plant single and leaf measurements are discussed. Data from this study suggest that stimulatory effects of atmospheric CO2 on growth and photosynthesis may decline with anticipated increases in global temperature, limiting the degree of carbon storage in these two perennial species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号