共查询到20条相似文献,搜索用时 0 毫秒
1.
Developmental expression of the GABAA receptor alpha 1 subunit mRNA in the rat brain 总被引:4,自引:0,他引:4
Recent studies have suggested that the GABAA, receptor complex, the site of action of the inhibitory neurotransmitter gamma amino-butyric acid (GABAA) and the anxiolytic benzodiazepines, is heterogeneous. Moreover, its composition may change during development. To better understand the molecular basis of receptor heterogeneity, the levels and distribution of the mRNA encoding the alpha 1 receptor subunit were examined in the developing and adult rat brain with quantitative in situ hybridization histochemistry. Our studies demonstrate that alpha 1 subunit mRNA expression changes during ontogeny. At late embryonic stages and in the first postnatal week, low levels of the mRNA were detected in the cortex, inferior colliculus, and hippocampus. The mRNA levels in these regions increased during the second and third postnatal weeks. Furthermore, a dramatic change in the distribution of the alpha 1 subunit mRNA was seen in the second postnatal week when the message first became detectable in the cerebellar cortex. During subsequent development and in the mature brain, the alpha 1 subunit mRNA was most abundant in the cerebellum, olfactory bulb, and inferior colliculus, although the absolute levels of mRNA varied by as much as sixfold in selected brain regions. The mature distribution of alpha 1 subunit mRNA, along with its temporal appearance in the cerebellum, suggests that this subunit is a constituent of the Type 1 benzodiazepine site of the GABAA receptor complex. Furthermore, the onset of alpha 1 subunit mRNA expression in the cerebellar cortex coincides with a period of extensive synapse formation, raising the possibility that synaptic interactions modulate the appearance of this GABAA receptor subunit in the cerebellum. 相似文献
2.
Cloning and expression of a novel rat GABAA receptor 总被引:6,自引:0,他引:6
S J Lolait A M O'Carroll K Kusano J M Muller M J Brownstein L C Mahan 《FEBS letters》1989,246(1-2):145-148
Two full-length cDNA clones encoding alpha- and beta-subunits of a GABAA receptor have been isolated from a rat cerebral cortex cDNA library. The mature alpha-subunit protein consists of 428 amino acids with a calculated Mr of 48,680. This protein is highly homologous (approximately 99% amino acid identity) with the bovine brain alpha 1-subunit receptor [(1988) Nature 335, 76-79]. The mature rat beta-subunit receptor is a 448 amino acid polypeptide and shares approximately 80% amino acid identity with the previously characterized bovine GABAA receptor beta-subunit [(1987) Nature 328, 221-227]. Co-expression of the cloned DNA in Xenopus oocytes produces a functional receptor and ion channel with pharmacological characteristics of a GABAA receptor. GABAA alpha- and beta-subunit mRNA is detectable in the cortex, cerebellum and hippocampus. 相似文献
3.
4.
Previously, we reported that the pre-B?tzinger complex (PBC) exhibited a dramatic reduction in cytochrome oxidase activity at postnatal day (P) 12. This coincided in time with decreases in glutamate and NMDA receptor subunit 1 and increases in GABA, GABAB, glycine receptor, and glutamate receptor GluR2. To test our hypothesis that various alpha-subunits of GABAA receptors also undergo changes in their expression during postnatal development, as they do in other brain regions, we undertook an in-depth immunohistochemical study of GABAA receptor subunits alpha1, alpha2, and alpha3 in the PBC of P0 to P21 rats. We found that 1) GABAA alpha3-subunit was expressed at relatively high levels at P0, which then declined with age; 2) GABAA alpha1-subunit was expressed at relatively low levels at P0 but increased with age; 3) the developmental trends of subunits alpha1 and alpha3 intersected at P12; and 4) GABAA alpha2-subunit expression was moderate to light at P0 and remained quite constant during development, being lowest at P21. These findings suggest that the apparent switch in relative expressions of subunits alpha3 and alpha1 during development and the intersection of slopes around P12 may be associated with possible changes in GABAA receptor subtypes that would mediate different functional properties of GABA transmission, such as primarily a less efficient inhibitory transmission before P12 and a more mature inhibitory effect at P12 and thereafter, as suggested by the kinetics of distinct postsynaptic potentials. This mechanism may contribute partially to the dramatic reduction in cytochrome oxidase activity within the PBC at P12, as shown previously. 相似文献
5.
The unique cytoplasmic loop regions of the alpha 1, alpha 2, alpha 3, and alpha 5 subunits of the GABAA receptor were expressed in bacterial and used to produce subunit-specific polyclonal antisera. Antibodies immobilized on protein A-Sepharose were used to isolate naturally occurring alpha-specific populations of GABAA receptors from rat brain that retained the ability to bind [3H]muscimol, [3H]flunitrazepam, [3H]Ro15-1788, and [125I]iodo-clonazepam with high affinity. Pharmacological characterization of these subtypes revealed marked differences between the isolated receptor populations and was generally in agreement with the reported pharmacological profiles of GABAA receptors in cells transiently transfected with alpha 1 beta 1 gamma 2, alpha 2 beta 1 gamma 2, alpha 3 beta 1 gamma 2, and alpha 5 beta 1 gamma 2 combinations of subunits. Additional subtypes were also identified that bind [3H]muscimol but do not bind benzodiazepines with high affinity. The majority of GABAA receptor oligomers contains only a single type of alpha subunit, and we conclude that alpha 1, alpha 2, alpha 3, and alpha 5 subunits exist in vivo in combination with the beta subunit and gamma 2 subunit. 相似文献
6.
Zhang X Lee TH Xiong X Chen Q Davidson C Wetsel WC Ellinwood EH 《Biochemical and biophysical research communications》2006,351(1):300-305
The present study investigated whether GABA(A) receptor alpha2 subunit and GAD(67) are involved in chronic high dose methamphetamine (METH)-induced sensitization and neurotoxicity. The METH sensitization was established in rats by 7-day pump infusion plus daily injection (25mg/kg/day) and a subsequent 28-day withdrawal period. Behavioral sensitization was assessed by behavioral ratings after challenge with METH (0.5mg/kg). The neurotoxicity was evaluated by the expression of glial fibrillary acidic protein (GFAP). Western blot assay showed that METH sensitization decreases GABA(A) alpha2 subunit and GAD(67) protein levels in the nucleus accumbens (NAc) core and shell, and conversely, these proteins were increased in the caudate. An upregulation of GFAP expression was observed in the caudate, but not in the NAc core and shell. These data suggest that inhibition of GABA transmission in the NAc is related to METH behavioral sensitization, whereas activation of GABA transmission in the caudate is associated with METH-induced neurotoxicity. 相似文献
7.
K Ikeda M Nagasawa H Mori K Araki K Sakimura M Watanabe Y Inoue M Mishina 《FEBS letters》1992,313(1):34-38
The primary structure of a novel subunit of the mouse NMDA (N-methyl-D-aspartate) receptor channel, designated epsilon 4, has been revealed by cloning and sequencing the cDNA. The epsilon 4 subunit shares high amino acid sequence identity with the epsilon 1, epsilon 2 and epsilon 3 subunits of the mouse NMDA receptor channel, thus constituting the epsilon subfamily of the glutamate receptor channel. Expression from cloned cDNAs of the epsilon 4 subunit together with the zeta 1 subunit in Xenopus oocytes yields functional NMDA receptor channels. The epsilon 4/zeta 1 heteromeric channel exhibits high apparent affinities for agonists and low sensitivities to competitive antagonists. The epsilon 4 subunit is thus distinct in functional properties from the epsilon 1, epsilon 2 and epsilon 3 subunits, and contributes further diversity of the NMDA receptor channel. 相似文献
8.
9.
Jin P Zhang J Rowe-Teeter C Yang J Stuve LL Fu GK 《The Journal of biological chemistry》2004,279(2):1408-1414
We have cloned a novel gamma-aminobutyric acid type A (GABAA) receptor gamma2 subunit variant named gamma2XL. gamma2XL contains an alternatively spliced exon, resulting in the addition of 40 amino acids to the N-terminal extracellular domain between Ser171 and Tyr172. We show that gamma2XL failed to localize to the cell surface when it was coexpressed with the alpha2 and beta1 subunits in human embryonic kidney 293 cells. Expression of gamma2XL in 293 cells suppressed GABAA receptor binding in a dose-dependent manner by preventing GABAA receptor cell-surface localization. We also generated a gamma2 mutant with Ser171 and Tyr172 converted to glycine and threonine, respectively. We demonstrate that this mutant has a significantly lower affinity for the alpha2 and beta1 subunits and failed to reach the cell surface when coexpressed with these subunits. Together, our results indicate that Ser171 and Tyr172 in the gamma2 subunit constitute a critical motif. When this motif is disrupted by insertion of the alternative exon, access of the gamma2 subunit to the cell surface is prevented. 相似文献
10.
A novel alpha subunit in rat brain GABAA receptors 总被引:16,自引:0,他引:16
M Khrestchatisky A J MacLennan M Y Chiang W T Xu M B Jackson N Brecha C Sternini R W Olsen A J Tobin 《Neuron》1989,3(6):745-753
Two cDNAs (alpha 1 and alpha 4) from rat brain cDNA libraries encode isoforms of the alpha subunit of the GABA/benzodiazepine receptor, which differ at 30% of their amino acid residues. Northern blot analysis and in situ hybridization histochemistry show that alpha 1 and alpha 4 mRNAs have distinct sizes and distinct regional and cellular distributions in rat brain: both mRNAs are found in the cortex and hippocampus; however, only the alpha 1 mRNA is detected in the cerebellum. We injected RNA transcribed from alpha 1 and alpha 4 cDNAs into Xenopus oocytes, together with an RNA for a rat beta subunit. We obtained GABA-dependent inward currents that were reversibly blocked by picrotoxin. Picrotoxin alone, applied to oocytes producing the alpha and beta polypeptides, elicited an outward current. We suggest that these polypeptides together produce GABA-gated ion channels that can also open spontaneously. 相似文献
11.
Novel methods for the isolation of gamma-aminobutyric acidA (GABAA) receptor alpha subunit iso-oligomers have been developed. Thus, populations of GABAA receptors containing the GABAA receptor alpha 1 subunit, the alpha 2 subunit, and the alpha 3 subunit have been purified from sodium deoxycholate extracts of bovine cerebral cortex with the retention of specific [3H]flunitrazepam-binding activity by anti-alpha 1 324-341, anti-Cys alpha 2 414-424, or anti-Cys alpha 3 454-467 antibody affinity chromatography, respectively. The relative abundance of the different specificity alpha subunits in these preparations was compared with benzodiazepine affinity chromatography-purified GABAA receptors by immunoblotting. In each case, it was found that although the immunoreactivity with the specific alpha subunit antibody that was used for purification was enriched in immunoaffinity-purified receptors, reactivity with the other alpha subunit specificity antibodies, together with anti-gamma 2 1-14 Cys immunoreactivity was found. Immunoprecipitation of GABAA receptors purified by anti-alpha 1 324-341 antibody affinity chromatography by all three anti-alpha subunit antibodies employed, together with the use of anti-alpha 1 324-341 and anti-Cys alpha 2 414-424 antibody affinity columns in series, further substantiated the partial co-purification of the different polypeptides. These results demonstrate the copurification of the gamma 2 subunit with each population of alpha 1, alpha 2, alpha 3 subunit-enriched GABAA receptors. They also show the existence of minor populations of GABAA receptors that contain alpha 1 alpha 2, alpha 1 alpha 3, and alpha 2 alpha 3 subunit pairs within single oligomers. 相似文献
12.
Cloning, expression and modulation of a mouse NMDA receptor subunit. 总被引:10,自引:0,他引:10
The primary structure and presence of two forms of the mouse N-methyl-D-aspartate (NMDA) receptor channel subunit zeta 1 have been disclosed by cloning and sequencing the cDNAs. The zeta 1 subunit shows approximately 20% amino acid sequence identities with the rodent alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)- or kainate-selective GluR subunits and has structural features common to neurotransmitter-gated ion channels. Functional homomeric zeta 1 channels expressed in Xenopus oocytes by injection of the subunit-specific mRNA exhibit current responses characteristic for the NMDA receptor channel such as activation by glycine, Ca2+ permeability, blocking by Mg2+ and activation by polyamine. It has been found that the zeta 1 channel activity is positively modulated by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). 相似文献
13.
GABAA receptor beta subunit heterogeneity: functional expression of cloned cDNAs. 总被引:23,自引:4,他引:23 下载免费PDF全文
Cloned cDNAs encoding two new beta subunits of the rat and bovine GABAA receptor have been isolated using a degenerate oligonucleotide probe based on a highly conserved peptide sequence in the second transmembrane domain of GABAA receptor subunits. The beta 2 and beta 3 subunits share approximately 72% sequence identity with the previously characterized beta 1 polypeptide. Northern analysis showed that both beta 2 and beta 3 mRNAs are more abundant in the brain than beta 1 mRNA. All three beta subunit encoding cDNAs were also identified in a library constructed from adrenal medulla RNA. Each beta subunit, when co-expressed in Xenopus oocytes with an alpha subunit, forms functional GABAA receptors. These results, together with the known alpha subunit heterogeneity, suggest that a variety of related but functionally distinct GABAA receptor subtypes are generated by different subunit combinations. 相似文献
14.
15.
16.
17.
18.
Nitric oxide-sensitive guanylyl cyclase is a heterodimeric enzyme consisting of one alpha and one beta subunit. Here, we clone the first alpha(2) subunit ortholog and functionally express the cDNA in Sf-9 cells. Our data indicate a high degree of conservation of the primary sequence and functional activity of the rat alpha(2) subunit. 相似文献
19.
K Kato 《Journal of molecular biology》1990,214(3):619-624
GABA (gamma-aminobutyric acid), the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by opening a chloride channel integral to the GABAA receptor. This action is potentiated by both benzodiazepine and barbiturate drugs. Since the isolation of cDNAs encoding GABAA receptor alpha 1 and beta 1 subunits, a further eight subunits have been identified. These subunits show GABAA receptor heterogeneity, unpredicted from classical pharmacological studies. I now report the isolation of a mouse cDNA clone encoding a novel GABAA receptor alpha subunit. The striking feature of this subunit is its regional distribution in the mouse brain. Northern hybridization and in situ hybridization experiments demonstrate that the subunit mRNA is expressed only in cerebellar granule cells. This is the first demonstration of the exclusive presence of a neuroreceptor subtype in a single neuronal cell type. 相似文献
20.
Xu Z Fang S Shi H Li H Deng Y Liao Y Wu JM Zheng H Zhu H Chen HM Tsang SY Xue H 《Protein science : a publication of the Protein Society》2005,14(10):2622-2637
Structural investigation of GABAA receptors has been limited by difficulties imposed by its trans-membrane-complex nature. In the present study, the topology of a membrane-proximal beta-rich (MPB) domain in the C139-L269 segment of the receptor alpha1 subunit was probed by mapping the benzodiazepine (BZ)-binding and epitopic sites, as well as fluorescence resonance energy transfer (FRET) analysis. Ala-scanning and semiconservative substitutions within this segment revealed the contribution of the phenyl rings of Y160 and Y210, the hydroxy group of S186 and the positive charge on R187 to BZ-binding. FRET with the bound BZ ligand indicated the proximity of Y160, S186, R187, and S206 to the BZ-binding site. On the other hand, epitope-mapping using the monoclonal antibodies (mAbs) against the MPB domain established a clustering of T172, R173, E174, Q196, and T197. Based on the lack of FRET between Trp substitutionally placed at R173 or V198 and bound BZ, this epitope-mapped cluster is located on a separate end of the folded protein from the BZ-binding site. Mutations of the five conserved Cys and Trp residues in the MPB domain gave rise to synergistic and rescuing effects on protein secondary structures and unfolding stability that point to a CCWCW-pentad, reminiscent to the CWC-triad "pin" of immunoglobulin (Ig)-like domains, important for the structural maintenance. These findings, together with secondary structure and fold predictions suggest an anti-parallel beta-strand topology with resemblance to Ig-like fold, having the BZ-binding and the epitopic residues being clustered at two different ends of the fold. 相似文献