首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We screened a gene trap library of Arabidopsis thaliana and isolated a line in which a gene encoding a homologue of monofunctional aspartate kinase was trapped by the reporter gene. Aspartate kinase (AK) is a key enzyme in the biosynthsis of aspartate family amino acids such as lysine, threonine, isoleucine, and methionine. In plants, two types of AK are known: one is AK which is sensitive to feedback inhibition by threonine and carries both AK and homoserine dehydrogenase (HSD) activities. The other one is monofunctional, sensitive to lysine and synergistically S-adenosylmethionine, and has only AK activity. We concluded that the trapped gene encoded a monofunctional aspartate kinase and designated as AK-lys3, because it lacked the HSD domain and had an amino acid sequence highly similar to those of the monofunctional aspartate kinases ofA. thaliana. AK-lys3 was highly expressed in xylem of leaves and hypocotyls and stele of roots. Significant expression of this gene was also observed in trichomes after bolting. Slight expression of AK-lys3 was detected in vascular bundles and mesophyll cells of cauline leaves, inflorescence stems, sepals, petals, and stigmas. These results indicated that this aspartate kinase gene was not expressed uniformly but in a spatially specific manner.  相似文献   

2.
Protein kinases are the largest enzyme superfamily involved in cell signal transduction and represent therapeutic targets for a range of diseases. There have been intensive efforts from many labs to understand their catalytic mechanisms, discover inhibitors and discern their cellular functions. In this review, we will describe two approaches developed to analyze protein kinases: bisubstrate analog inhibition and phosphonate analog utilization. Both of these methods have been used in combination with the protein semisynthesis method expressed protein ligation to advance our understanding of kinase-substrate interactions and functional elucidation of phosphorylation. Previous work on the nature of the protein kinase mechanism suggests it follows a dissociative transition state. A bisubstrate analog was designed against the insulin receptor kinase to mimic the geometry of a dissociative transition state reaction coordinate distance. This bisubstrate compound proved to be a potent inhibitor against the insulin receptor kinase and occupied both peptide and nucleotide binding sites. Bisubstrate compounds with altered hydrogen bonding potential as well as varying spacers between the adenine and the peptide demonstrate the importance of the original design features. We have also shown that related bisubstrate analogs can be used to potently block serine/threonine kinases including protein kinase A. Since many protein kinases recognize folded protein substrates for efficient phosphorylation, it was advantageous to incorporate the peptide-ATP conjugates into protein structures. Using expressed protein ligation, a Src-ATP conjugate was produced and shown to be a high affinity ligand for the Csk tyrosine kinase. Nonhydrolyzable mimics of phosphoSer/phosphoTyr can be useful in examining the functionality of phosphorylation events. Using expressed protein ligation, we have employed phosphonomethylene phenylalanine and phosphonomethylene alanine to probe the phosphorylation of Tyr and Ser, respectively. These tools have permitted an analysis of the SH2-phosphatases (SHP1 and SHP2), revealing a novel intramolecular stimulation of catalytic activity mediated by the corresponding phosphorylation events. They have also been used to characterize the cellular regulation of the melatonin rhythm enzyme by phosphorylation.  相似文献   

3.
A search in the Bacillus subtilis genome sequence found that the gene designated yclM encode(s) a protein showing significant identity in amino acid sequence to aspartate kinases. When yclM was introduced into Escherichia coli cells deficient in all three aspartate kinase genes, production of a protein with molecular size 50 kDa, which was similar to the value deduced from the nucleotide sequence of the gene, was observed. Expectedly, the protein purified to homogeneity had aspartate kinase activity. The enzyme was significantly inhibited by simultaneous addition of both threonine and lysine, which is a typical feature of aspartate kinase III of B. subtilis. The enzyme was very unstable in 10 mM tris-HCl (pH 7.5) buffer, but was stabilized by addition of 500 mM ammonium sulfate. Although all the aspartate kinases so far investigated are oligomeric enzymes, this aspartate kinase was suggested to be a monomer.  相似文献   

4.
Strong TC  Kaur G  Thomas JH 《PloS one》2011,6(11):e28100
The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.  相似文献   

5.
Aminoglycosides are antibacterial compounds that act by binding to the A site of the small 30S bacterial ribosomal subunit and inhibiting protein translation. Clinical resistance to aminoglycosides is generally the result of the expression of enzymes that covalently modify the antibiotic, including phosphorylation, adenylylation, and acetylation. Bisubstrate analogs for the aminoglycoside N-acetyltransferases are nanomolar inhibitors of Enterococcus faecium AAC(6')-Ii. However, in the case of the Salmonella enterica aac(6')-Iy-encoded aminoglycoside N-acetyltransferase, we demonstrate that a series of bisubstrate analogs are only micromolar inhibitors. In contrast to studies with AAC(6')-Ii, the inhibition constants toward AAC(6')-Iy are essentially independent of both the identity of the aminoglycoside component of the bisubstrate and the number of carbon atoms that are used to link the CoA and aminoglycoside components. The patterns of inhibition suggest that the CoA portion of the bisubstrate analog can bind to the enzyme-aminoglycoside substrate complex and that the aminoglycoside portion can bind to the enzyme-CoA product complex. However, at the high concentrations of bisubstrate analog used in crystallization experiments, we could crystallize and solve the three-dimensional structure of the enzyme-bisubstrate complex. The structure reveals that both the CoA and aminoglycoside portions bind in essentially the same positions as those previously observed for the enzyme-CoA-ribostamycin complex, with only a modest adjustment to accommodate the "linker". These results are compared to previous studies of the interaction of similar bisubstrate analogs with other aminoglycoside N-acetyltransferases.  相似文献   

6.
Crystal structures of equine herpesvirus type-4 thymidine kinase (EHV4-TK) in complex with (i). thymidine and ADP, (ii). thymidine and SO(4) and the bisubstrate analogs, (iii). TP(4)A, and (iv). TP(5)A have been solved. Additionally, the structure of herpes simplex virus type-1 thymidine kinase (HSV1-TK) in complex with TP(5)A has been determined. These are the first structures of nucleoside kinases revealing conformational transitions upon binding of bisubstrate analogs. The structural basis for the dual thymidine and thymidylate kinase activity of these TKs is elucidated. While the active sites of HSV1-TK and EHV4-TK resemble one another, notable differences are observed in the Lid regions and in the way the enzymes bind the base of the phosphoryl-acceptor. The latter difference could partly explain the higher activity of EHV4-TK toward the prodrug ganciclovir.  相似文献   

7.
Interactions between adenosine-oligoarginine conjugates (ARC), bisubstrate analog inhibitors of protein kinases, and catalytic subunits of cAMP-dependent protein kinase (cAPK Calpha) were characterized with surface-plasmon-resonance-based biosensors. ARC-704 bound to the immobilized kinase with subnanomolar affinity. The immobilization of ARC-704 to the chip surface via streptavidin-biotin complex yielded a high-affinity surface (K(D)=16nM). The bisubstrate character of ARC-704 was demonstrated with various ligands targeted to ATP-binding pocket (ATP and inhibitors H89 and H1152P) and protein-substrate-binding domain of Calpha (RIIalpha and GST-PKIalpha) in competition assays. The experiments performed on surfaces with different immobilization levels of ARC-704 produced similar results. The closeness of the obtained affinities of the tested compounds to the inhibitory potencies and affinities of the compounds measured with other methods demonstrates the applicability of the chip with the immobilized biligand inhibitor for the characterization of both ATP- and substrate protein-competitive ligands of basophilic protein kinases.  相似文献   

8.
Saccharomyces cerevisiae aspartate kinase (AK(Sc)) phosphorylates L-Asp as the first step in the aspartate pathway responsible for the biosynthesis of L-Thr, L-Met, and L-Ile in microorganisms and plants. Using site-directed mutagenesis, we have evaluated the importance of residues in AK(Sc) that are strongly conserved among aspartate kinases or in other small molecule kinases. Steady state kinetic analysis of the purified AK(Sc) variants reveals that several of the targeted amino acids, particularly K18 and H292, have important roles in the enzymatic reaction. These results provide the first identification of amino acid residues crucial to the action of this important metabolic enzyme.  相似文献   

9.
Small molecule inhibitors belonging to the pyrido[2,3-d]pyrimidine class of compounds were developed as antagonists of protein tyrosine kinases implicated in cancer progression. Derivatives from this compound class are effective against most of the imatinib mesylate-resistant BCR-ABL mutants isolated from advanced chronic myeloid leukemia patients. Here, we established an efficient proteomics method employing an immobilized pyrido[2,3-d]pyrimidine ligand as an affinity probe and identified more than 30 human protein kinases affected by this class of compounds. Remarkably, in vitro kinase assays revealed that the serine/threonine kinases Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) and p38alpha were among the most potently inhibited kinase targets. Thus, pyrido[2,3-d]pyrimidines did not discriminate between tyrosine and serine/threonine kinases. Instead, we found that these inhibitors are quite selective for protein kinases possessing a conserved small amino acid residue such as threonine at a critical site of the ATP binding pocket. We further demonstrated inhibition of both p38 and RICK kinase activities in intact cells upon pyrido[2,3-d]pyrimidine inhibitor treatment. Moreover, the established functions of these two kinases as signal transducers of inflammatory responses could be correlated with a potent in vivo inhibition of cytokine production by a pyrido[2,3-d]pyrimidine compound. Thus, our data demonstrate the utility of proteomic methods employing immobilized kinase inhibitors for identifying new targets linked to previously unrecognized therapeutic applications.  相似文献   

10.
11.
NAD kinase phosphorylates NAD+ to form NADP+ and is strictly specific to NAD+, whereas NADH kinase phosphorylates both NAD+ and NADH, thereby showing relaxed substrate specificity. Based on their primary and tertiary structures, the difference in the substrate specificities between NAD and NADH kinases was proposed to be caused by one aligned residue: Gly or polar amino acid (Gln or Thr) in five NADH kinases and a charged amino acid (Arg) in two NAD kinases. The substitution of Arg with Gly in the two NAD kinases relaxed the substrate specificity (i.e. converted the NAD kinases to NADH kinases). The substitution of Arg in one NAD kinase with polar amino acids also relaxed the substrate specificity, whereas substitution with charged and hydrophobic amino acids did not show a similar result. In contrast, the substitution of Gly with Arg in one NADH kinase failed to convert it to NAD kinase. These results suggest that a charged or hydrophobic amino acid residue in the position of interest is crucial for strict specificity of NAD kinases to NAD+, whereas Gly or polar amino acid residue is not the sole determinant for the relaxed substrate specificity of NADH kinases. The significance of the conservation of the residue at the position in 207 NAD kinase homologues is also discussed.  相似文献   

12.
NDR (nuclear Dbf2-related) kinase belongs to a family of kinases that is highly conserved throughout the eukaryotic world. We showed previously that NDR is regulated by phosphorylation and by the Ca(2+)-binding protein, S100B. The budding yeast relatives of Homo sapiens NDR, Cbk1, and Dbf2, were shown to interact with Mob2 (Mps one binder 2) and Mob1, respectively. This interaction is required for the activity and biological function of these kinases. In this study, we show that hMOB1, the closest relative of yeast Mob1 and Mob2, stimulates NDR kinase activity and interacts with NDR both in vivo and in vitro. The point mutations of highly conserved residues within the N-terminal domain of NDR reduced NDR kinase activity as well as human MOB1 binding. A novel feature of NDR kinases is an insert within the catalytic domain between subdomains VII and VIII. The amino acid sequence within this insert shows a high basic amino acid content in all of the kinases of the NDR family known to interact with MOB proteins. We show that this sequence is autoinhibitory, and our data indicate that the binding of human MOB1 to the N-terminal domain of NDR induces the release of this autoinhibition.  相似文献   

13.
In this paper, we describe a simple method to measure the yeast homoserine kinase and aspartate kinase activities, independently but in the same extract. With this method, we have determined some kinetic parameters for the physiological substrates of both enzymes, and investigated the inhibition exerted by different amino acids on these activities. Of all natural amino acids tested, only threonine inhibits effectively both enzymatic activities, although to a different degree. We did not find the reported inhibition by L-homoserine over the aspartate kinase. Altogether the data point to the aspartate kinase and to the threonine as the key factors in the regulation of this route.  相似文献   

14.
The substrate specificity of protein kinase C was studied and compared with that of cyclic AMP-dependent protein kinase (protein kinase A) by using bovine brain myelin basic protein as a model substrate. This basic protein was phosphorylated at multiple sites by both of these protein kinases. In this analysis, the basic protein was thoroughly phosphorylated in vitro with [gamma-32P]ATP and each protein kinase, and then digested with trypsin. The resulting radioactive phosphopeptides were isolated by gel filtration followed by high performance liquid chromatography on a reverse-phase column. Subsequent amino acid analysis and/or sequential Edman degradation of the purified phosphopeptides, together with the known primary sequence of this protein, revealed that Ser-46 and Ser-151 were specifically phosphorylated by protein kinase C, whereas Thr-34 and Ser-115 were phosphorylated preferentially by protein kinase A. Both kinases reacted with Ser-8, Ser-11, Ser-55, Ser-110, Ser-132, and Ser-161 at various reaction velocities. Contrary to protein kinase A, protein kinase C appears to react preferentially with seryl residues that are located at the amino-terminal side close to lysine or arginine. The seryl residues that are phosphorylated commonly by these two protein kinases have basic amino acids at both the amino- and carboxyl-terminal sides. These results provide some clues to understanding the rationale that these kinases may show different but sometimes similar functions depending on the structure of target phosphate acceptor proteins.  相似文献   

15.
Abstract

Protein kinases are key players in a large number of cellular signaling pathways. Dysregulated kinase activity has been implicated in a number of diseases, and members of this enzyme family are of therapeutic interest. However, due to the fact that most inhibitors interact with the highly conserved ATP-binding sites of kinases, it is a significant challenge to develop pharmacological agents that target only one of the greater than 500 kinases present in humans. A potential solution to this problem is the development of bisubstrate and bivalent kinase inhibitors, in which an active site-directed moiety is tethered to another ligand that targets a location outside of the ATP-binding cleft. Because kinase signaling specificity is modulated by regions outside of the ATP-binding site, strategies that exploit these interactions have the potential to provide reagents with high target selectivity. This review highlights examples of kinase interaction sites that can potentially be exploited by bisubstrate and bivalent inhibitors. Furthermore, an overview of efforts to target these interactions with bisubstrate and bivalent inhibitors is provided. Finally, several examples of the successful application of these reagents in a cellular setting are described.  相似文献   

16.
The ribosomal protein S6 kinase 1 (S6K1) is emerging as a common downstream target of signalling by hormones and nutrients such as insulin and amino acids. Here, we have investigated how amino acids signal through the S6K1 pathway. First, we found that a commercial anti-phospho-Thr389-S6K1 antibody detects an 80-90 kDa protein that is rapidly phosphorylated in response to amino acids. Unexpectedly, this phosphorylation was insensitive to both mTOR and PI-3 kinase inhibitors, and knockdown experiments showed that this protein was not S6K1. Looking for candidate targets of this phosphorylation, we found that amino acids stimulated phosphorylation of RSK and MSK kinases at residues that are homologous to Thr389 in S6K1. In turn, these phosphorylations required the activity of either p38 or ERK MAP kinases, which could compensate for each other. Moreover, we show that these MAP kinases are also needed for the amino acid-induced phosphorylation of S6K1 at Thr421/Ser424, as well as for that of S6K1 substrate, the S6 ribosomal protein. Consistent with these results, concomitant inhibition of p38 and ERK pathways also antagonised the well-known effects of amino acids on the process of autophagy. Altogether, these findings demonstrate a previously unknown role for MAP kinases in amino acid signalling.  相似文献   

17.
We test, using site-directed mutagenesis, predictions based on the X-ray structure of N-acetyl-L-glutamate kinase (NAGK), the paradigm of the amino acid kinase protein family, about the roles of specific residues on substrate binding and catalysis. The mutations K8R and D162E decreased V([sustrate]= infinity ) 100-fold and 1000-fold, respectively, in agreement with the predictions that K8 catalyzes phosphoryl transfer and D162 organizes the catalytic groups. R66K and N158Q increased selectively K(m)(Asp) three to four orders of magnitude, in agreement with the binding of R66 and N158 to the C(alpha) substituents of NAG. Mutagenesis in parallel of aspartokinase III (AKIII phosphorylates aspartate instead of acetylglutamate), another important amino acid kinase family member of unknown 3-D structure, identified in AKIII two residues, K8 and D202, that appear to play roles similar to those of K8 and D162 of NAGK, and supports the involvement of E119 and R198, similarly to R66 and N158 of NAGK, in the binding of the amino acid substrate, apparently interacting, respectively, with the alpha-NH(3)(+) and alpha-COO(-) of aspartate. These results and an improved alignment of the NAGK and AKIII sequences have guided us into 3-D modelling of the amino acid kinase domain of AKIII using NAGK as template. The model has good stereochemistry and validation parameters. It provides insight into substrate binding and catalysis, agreeing with mutagenesis results with another aspartokinase that were not considered when building the model.AKIII is homodimeric and is inhibited by lysine. Lysine may bind to a regulatory region that is C-terminal to the amino acid kinase domain. We make a C-terminally truncated AKIII (AKIIIt) and show that the C-region is involved in intersubunit interactions, since AKIIIt is found to be monomeric. Further, it is inactive, as demanded if dimer formation is essential for activity. Models for AKIII architecture are proposed that account for these findings.  相似文献   

18.
Eukaryotic elongation factor 2 (eEF2) kinase is an unusual calcium- and calmodulin-dependent protein kinase that is regulated by insulin through the rapamycin-sensitive mTOR pathway. Here we show that insulin decreases the ability of eEF2 kinase to bind calmodulin in a rapamycin-sensitive manner. We identify a novel phosphorylation site in eEF2 kinase (Ser78) that is located immediately next to its calmodulin-binding motif. Phosphorylation of this site is increased by insulin in a rapamycin-sensitive fashion. Regulation of the phosphorylation of Ser78 also requires amino acids and the protein kinase phosphoinositide-dependent kinase 1. Mutation of this site to alanine strongly attenuates the effects of insulin and rapamycin both on the binding of calmodulin to eEF2 kinase and on eEF2 kinase activity. Phosphorylation of Ser78 is thus likely to link insulin and mTOR signaling to the control of eEF2 phosphorylation and chain elongation. This site is not a target for known kinases in the mTOR pathway, e.g., the S6 kinases, implying that it is phosphorylated by a novel mTOR-linked protein kinase that serves to couple hormones and amino acids to the control of translation elongation. eEF2 kinase is thus a target for mTOR signaling independently of previously known downstream components of the pathway.  相似文献   

19.
The authors present a fluorescence lifetime-based kinase binding assay that identifies and characterizes compounds that bind to the adenosine triphosphate (ATP)-binding pocket of a range of tyrosine and serine/threonine kinases. The assay is based on displacement of an Alexa Fluor 647 conjugate of staurosporine from the ATP-binding site of a kinase, which is detected by a change in the fluorescence lifetime of the probe between the free (displaced) and kinase-bound states. The authors screened 257 kinases for specific binding and displacement of the Alexa Fluor 647-staurosporine probe and found that approximately half of the kinases tested could potentially be assayed with this method. They present inhibitor binding data against 4 selected serine/threonine kinases and 4 selected tyrosine kinases, using 6 commonly used kinase inhibitors. Two of these kinases were chosen for further studies, in which inhibitor binding data were compared to inhibition of kinase activity using 2 separate activity assay formats. Rank-order potencies of compounds were similar, but not identical, between the binding and activity assays. It was postulated that these differences could be caused by the fact that the assays are measuring distinct phenomena, namely, activity versus binding, and in a purified recombinant kinase preparation, there can exist a mixture of active and nonactivated kinases. To explore this possibility, the authors compared binding affinity for the probe using 2 kinases in their respective nonactivated and activated (phosphorylated) forms and found a kinase-dependent difference between the 2 forms. This assay format therefore represents a simple method for the identification and characterization of small-molecule kinase inhibitors that may be useful in screening a wide range of kinases and may be useful in identifying small molecules that bind to kinases in their active or nonactivated states.  相似文献   

20.
To explore the protein kinase family enzymes expressed in cells, we attempted to generate antibodies that could detect a wide variety of protein kinases. For the production of such antibodies, synthetic peptides corresponding to amino acid sequences of a highly conserved subdomain (subdomain VIB) of the protein kinase family were used for immunization. Among the various peptide antigens, a peptide with 16 amino acids, CVVHRDLKPENLLLAS, effectively produced polyclonal antibodies with broad cross-reactivities to protein kinases. Two monoclonal antibodies, designated M8C and M1C, detected a variety of protein kinases such as calmodulin-dependent protein kinase II, calmodulin-dependent protein kinase IV, cAMP-dependent protein kinase, and mitogen-activated protein kinases, on Western blotting. The antibodies also immunoprecipitated various protein kinases in cell extracts. Furthermore, these antibodies could be used for detection of positive clones in the expression cloning of various protein kinases. Among 39 positive clones obtained from mouse brain cDNA library, 36 clones were identified as cDNA clones for various known and novel protein serine/threonine kinases, suggesting that the antibodies reacted highly specifically with various protein kinases. These results indicate that the present monoclonal antibodies directed to multiple protein kinases will be a powerful tool for the detection of a variety of known and novel protein kinases in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号