首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correspondence to: H.Tanooka at Genetic Division  相似文献   

2.
Oligomerization of oncoprotein p53   总被引:24,自引:3,他引:21       下载免费PDF全文
Cellular phosphoprotein p53, which seems to be a multifunctional protein, may be assigned to different structural subclasses. Recently established immortalized or transformed cell lines that overexpress p53 allowed us to perform a detailed analysis of the quaternary structure of p53. By means of sucrose density gradient centrifugation, we found in simian virus 40-transformed cells that overexpress p53, in addition to high-molecular-weight T-p53 complexes, low-molecular-weight forms. The level of T-p53 complexes within simian virus 40-transformed cells seemed to be determined by the intracellular concentration of p53. However, the presence of uncomplexed T antigen and p53 indicated that an appropriate modification of at least one of the two proteins appears to be necessary for complex formation. Using different monoclonal antibodies that distinguish between (i) p53 associated with T antigen or heat shock proteins and (ii) p53 in apparently free form, we found p53 from transformed cells always in high-molecular-weight forms. p53 from normal and immortalized cells, however, was found mainly in low-molecular-weight forms. Pulse-labeling experiments revealed that oligomerization of p53 is a very rapid process. Monomeric forms of p53 which could be detected only by 2 min of pulse-labeling were rapidly converted to stable, high-molecular-weight oligomers. Furthermore, our data indicate a correlation between the occurrence of p53 in high-molecular-weight forms and the transformation state of the cell.  相似文献   

3.
Currently there are several dozen human polymorphisms that have been loosely associated with cancer risk. Correlating such variants with cancer risk has been challenging, primarily due to factors such as genetic heterogeneity, contributions of diet and environmental factors, and the difficulty in obtaining large sample sizes for analysis. Such difficulties can be circumvented with the establishment of mouse models for human variants. Recently, several groups have modeled human cancer susceptibility polymorphisms in the mouse. Remarkably, in each case these mouse models have accurately reflected human phenotypes, and clarified the contribution of these variants to cancer risk. We recently reported on a mouse model for the codon 72 polymorphism in p53, and found that this polymorphism regulates the ability to cooperate with NF-kB and induce apoptosis. Here-in we present evidence that this polymorphism impacts the apoptotic function of p53 in a tissue-specific manner; such tissue-specific effects of polymorphic variants represent an added challenge to human cancer risk association studies. The data presented here support the premise that modeling human polymorphisms in the mouse represents a powerful tool to assess the impact of these variants on cancer risk, progression and therapy.  相似文献   

4.
Currently there are several dozen human polymorphisms that have been loosely associated with cancer risk. Correlating such variants with cancer risk has been challenging, primarily due to factors such as genetic heterogeneity, contributions of diet and environmental factors, and the difficulty in obtaining large sample sizes for analysis. Such difficulties can be circumvented with the establishment of mouse models for human variants. Recently, several groups have modeled human cancer susceptibility polymorphisms in the mouse. Remarkably, in each case these mouse models have accurately reflected human phenotypes, and clarified the contribution of these variants to cancer risk. We recently reported on a mouse model for the codon 72 polymorphism in p53, and found that this polymorphism regulates the ability to cooperate with NFκB and induce apoptosis. Here-in we present evidence that this polymorphism impacts the apoptotic function of p53 in a tissue-specific manner; such tissue-specific effects of polymorphic variants represent an added challenge to human cancer risk association studies. The data presented here support the premise that modeling human polymorphisms in the mouse represents a powerful tool to assess the impact of these variants on cancer risk, progression and therapy.Key words: p53, polymorphism, apoptosis, codon 72, NFκB  相似文献   

5.
The chromosomal assignments of the two genes encoding the murine p53 cellular tumor antigen were determined by using a panel of mouse-Chinese hamster somatic cell hybrid clones and a mouse p53-specific cDNA clone. One gene, probably the functional member of the family, was found to be on chromosome 11. The other gene, which is probably a processed pseudogene, was assigned to chromosome 14. The potential relevance of these findings to documented cases of chromosome 11 trisomy are also discussed.  相似文献   

6.
7.
Stabilization of the MDM2 oncoprotein by mutant p53   总被引:3,自引:0,他引:3  
MDM2 is a short-lived protein that regulates p53 degradation. We report here that transient coexpression of MDM2 and several p53 hotspot mutants resulted in stabilization and increased expression of MDM2. Ectopic expression of the mutant p53(175H) allele by recombinant adenovirus infection or stable transfection also stabilized endogenous MDM2 in p53-null cells. A panel of human tumor cell lines expressing different endogenous mutant p53 alleles also contained stabilized nuclear MDM2 at elevated levels when compared with p53-null cells. MDM2 was present in complexes with mutant p53 in tumor cells, and stabilization of MDM2 required direct binding to mutant p53. These results reveal a novel property of mutant p53 and a unique feature of tumors with p53 missense mutations. Accumulation of stable MDM2 may contribute to tumorigenesis through its p53-independent transforming functions.  相似文献   

8.
Nucleotide sequencing of cDNA clone specific for murine oncoprotein p53 from the SVTZ all line has revealed nucleotide changes as compared with previously published structures of p53 cDNA originated from other cell lines.  相似文献   

9.
Increased expression and activity of the ubiquitous enzyme, tissue transglutaminase (TG2), is consistently seen in a variety of models of apoptosis. The p53 oncoprotein is also involved in apoptosis. Here we investigated the interaction of TG2 with p53 and show that the p53 is a substrate for the recently identified serine/threonine kinase activity of TG2. Phosphospecific antibodies indicated that TG2 phosphorylated p53 at Ser(15) and Ser(20), residues that are critically important in the interaction of p53 with Mdm2. The TG2-induced phosphorylation was abrogated by high Ca(2+) concentrations and inhibited by cystamine, a known inhibitor of TG2 cross-linking activity. Furthermore, we demonstrate that TG2-induced phosphorylation of p53 reduces the ability of p53 to interact with Mdm2. Although TG2 cross-linking activity has been clearly implicated in apoptosis, our observations reported here suggest TG2 modification of p53 could be an additional mechanism whereby TG2 could facilitate apoptosis.  相似文献   

10.
11.
p73 responds to DNA damage and exerts its pro-apoptotic function. However, p73 might contribute to the development of drug-resistance in certain tumor cells. In this study, we found that p73 and MDM2 correlate with cisplatin-resistant phenotype of human epidermoid carcinoma-derived cells. p73 and MDM2 were kept at low levels in the cisplatin-sensitive KB-3-1 cells, whereas p53 was induced to be phosphorylated at Ser-15 in response to cisplatin. In contrast, p73 and MDM2 were expressed at higher levels, and cisplatin-mediated p53 phosphorylation was undetectable in the cisplatin-resistant KCP-4 cells. Enforced expression of p73 in KB-3-1 cells caused an accumulation of unphosphorylated form of p53 and MDM2, and conferred the cisplatin resistance. Collectively, our results suggest that a loss of the cisplatin sensitivity is at least in part due to a lack of cisplatin-induced p53 phosphorylation, and p73 might cooperate with MDM2 to be involved in this process.  相似文献   

12.
13.
14.
The E6 oncoprotein produced by high-risk mucosal HPV stimulates ubiquitinylation and proteasome-dependent degradation of the tumour suppressor p53 via formation of a trimeric complex comprising E6, p53, and E6-AP. p53 is also degraded by its main cellular regulator MDM2. The main binding site of p53 to MDM2 is situated in the natively unfolded N-terminal region of p53. By contrast, the regions of p53 implicated in the degradation by viral E6 are not fully identified to date. Here we generated a series of mutations (Y103G, Y107G, T155A, T155V, T155D, L264A, L265A) targeting the central folded core domain of p53 within a region opposite to its DNA-binding site. We analysed by in vitro and in vivo assays the impact of these mutations on p53 degradation mediated by viral E6 oncoprotein. Whereas all mutants remained susceptible to MDM2-mediated degradation, several of them (Y103G, Y107G, T155D, L265A) became resistant to E6-mediated degradation, confirming previous works that pointed to the core domain as an essential region for the degradation of p53. In parallel, we systematically checked the impact of the mutations on the transactivation activity of p53 as well as on the conformation of p53, analysed by Nuclear Magnetic Resonance (NMR), circular dichroism (CD), and antibody probing. These measurements suggested that the conformational integrity of the core domain is an essential parameter for the degradation of p53 by E6, while it is not essential for the degradation of p53 by MDM2. Thus, the intracellular stability of a protein may or may not rely on its biophysical stability depending on the degradation pathway taken into consideration.  相似文献   

15.
16.
17.
18.
19.
Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4   总被引:7,自引:0,他引:7       下载免费PDF全文
The function of the p53 tumor suppressor to inhibit proliferation or initiate apoptosis is often abrogated in tumor cells. Mdm2 and its homolog, Mdm4, are critical inhibitors of p53 that are often overexpressed in human tumors. In mice, loss of Mdm2 or Mdm4 leads to embryonic lethal phenotypes that are completely rescued by concomitant loss of p53. To examine the role of Mdm2 and Mdm4 in a temporal and tissue-specific manner and to determine the relationships of these inhibitors to each other, we generated conditional alleles. We deleted Mdm2 and Mdm4 in cardiomyocytes, since proliferation and apoptosis are important processes in heart development. Mice lacking Mdm2 in the heart were embryonic lethal and showed defects at the time recombination occurred. A critical number of cardiomyocytes were lost by embryonic day 13.5, resulting in heart failure. This phenotype was completely rescued by deletion of p53. Mice lacking Mdm4 in the heart were born at the correct ratio and appeared to be normal. Our studies provide the first direct evidence that Mdm2 can function in the absence of Mdm4 to regulate p53 activity in a tissue-specific manner. Moreover, Mdm4 cannot compensate for the loss of Mdm2 in heart development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号