首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In this study we evaluated the effect of quercetin on D-galactose-induced aged mice using the Morris water maze (MWM) test. Based on the free radical theory of aging, experiments were performed to study the possible biochemical mechanisms of glutathione (GSH) level and hydroxyl radical (OH) in the hippocampus and cerebral cortex and the brain tissue enzyme activity of the mice. The results indicated that quercetin can enhance the exploratory behavior, spatial learning and memory of the mice. The effects relate with enhancing the brain functions and inhibiting oxidative stress by quercetin, and relate with increasing the GSH level and decreasing the OH content. These findings suggest that quercetin can work as a possible natural anti-aging pharmaceutical product.  相似文献   

2.
Cognitive dysfunction, one of the most striking age-related impairments seen in human beings, has been correlated to the vulnerability of the brain to increased oxidative stress during aging process. Quercetin is a bioflavonoid with strong antioxidant properties. Experiments were performed to study the possible effects of quercetin on cognitive performance of young, aged or ethanol-intoxicated mice (an animal model for cognition dysfunction) using one trail step down type of passive avoidance and elevated plus maze tasks, respectively. Aged or chronic ethanol-treated mice showed poor retention of memory in step-down passive avoidance and in elevated plus-maze task. Chronic administration of quercetin (10, 25 and 50 mg/kg) for 30 days or its co-administration with ethanol (15% w/v, 2 g/kg per orally) for 24 days significantly reversed the age-related or chronic ethanol-induced retention deficits in both the test paradigms. However, in both memory paradigms chronic administration of quercetin failed to modulate the retention performance of young mice. Chronic quercetin administration for 30 days also reversed age associated increase in TBARS levels and decline in forebrain total glutathione (GSH), SOD and catalase levels. Chronic ethanol administration to young mice produced an increase in lipid peroxidation, and a decline in forebrain total glutathione (GSH), SOD and catalase levels, which was significantly reversed by the co-administration of quercetin (10, 25 and 50 mg/kg). The results of the present study showed that chronic quercetin treatment reverses cognitive deficits in aged and ethanol-intoxicated mice, which is associated with its antioxidant property.  相似文献   

3.
Cognitive dysfunction, one of the most striking age-related impairments seen in human beings, has been correlated to the vulnerability of the brain to increased oxidative stress during aging process. Quercetin is a bioflavonoid with strong antioxidant properties. Experiments were performed to study the possible effects of quercetin on cognitive performance of young, aged or ethanol-intoxicated mice (an animal model for cognition dysfunction) using one trail step down type of passive avoidance and elevated plus maze tasks, respectively. Aged or chronic ethanol-treated mice showed poor retention of memory in step-down passive avoidance and in elevated plus-maze task. Chronic administration of quercetin (10, 25 and 50 mg/kg) for 30 days or its co-administration with ethanol (15% w/v, 2 g/kg per orally) for 24 days significantly reversed the age-related or chronic ethanol-induced retention deficits in both the test paradigms. However, in both memory paradigms chronic administration of quercetin failed to modulate the retention performance of young mice. Chronic quercetin administration for 30 days also reversed age associated increase in TBARS levels and decline in forebrain total glutathione (GSH), SOD and catalase levels. Chronic ethanol administration to young mice produced an increase in lipid peroxidation, and a decline in forebrain total glutathione (GSH), SOD and catalase levels, which was significantly reversed by the co-administration of quercetin (10, 25 and 50 mg/kg). The results of the present study showed that chronic quercetin treatment reverses cognitive deficits in aged and ethanol-intoxicated mice, which is associated with its antioxidant property.  相似文献   

4.
GSH was readily depleted by a flavonoid, H(2)O(2), and peroxidase mixture but the products formed were dependent on the redox potential of the flavonoid. Catalytic amounts of apigenin and naringenin but not kaempferol (flavonoids that contain a phenol B ring) when oxidized by H(2)O(2) and peroxidase co-oxidized GSH to GSSG via a thiyl radical which could be trapped by 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) to form a DMPO-glutathionyl radical adduct detected by ESR spectroscopy. On the other hand, quercetin and luteolin (flavonoids that contain a catechol B ring) or kaempferol depleted GSH stoichiometrically without forming a thiyl radical or GSSG. Quercetin, luteolin, and kaempferol formed mono-GSH and bis-GSH conjugates, whereas apigenin and naringenin did not form GSH conjugates. MS/MS electrospray spectroscopy showed that mono-GSH conjugates for quercetin and luteolin had peaks at m/z 608 [M + H](+) and m/z 592 [M + H](+) in the positive-ion mode, respectively. (1)H NMR spectroscopy showed that the GSH was bound to the quercetin A ring. Spectral studies indicated that at a physiological pH the luteolin-SG conjugate was formed from a product with a UV maximum absorbance at 260 nm that was reducible by potassium borohydride. The quercetin-SG conjugate or kaempferol-SG conjugate on the other hand was formed from a product with a UV maximum absorbance at 335 nm that was not reducible by potassium borohydride. These results suggest that GSH was oxidized by apigenin/naringenin phenoxyl radicals, whereas GSH conjugate formation involved the o-quinone metabolite of luteolin or the quinoid (quinone methide) product of quercetin/kaempferol.  相似文献   

5.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

6.
The elevation of endogenous thiol-related antioxidants and free radical scavenging enzymes in the brain of C57BL/6 female mice after low-dose γ-ray irradiation and its inhibitory effect on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced brain damage were investigated. The brain level of the reduced form of glutathione (GSH) increased soon after irradiation with 50 cGy of γ-rays, reached a maximum at 3 h post-treatment, and remained elevated until 12 h. Thioredoxin (TRX) was also transiently increased after irradiation. The activities of free radical scavenging enzymes, including Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, were significantly induced after irradiation as well. Cerebral malondialdehyde was remarkably elevated by MPTP treatment, and this elevation was suppressed by pre- irradiation (50 cGy). The contents of GSH and TRX were significantly decreased by MPTP treatment in comparison with those of the control group. These reductions both seemed to be attenuated by pre-irradiation with γ-rays. These results suggest that low-dose γ-ray irradiation induces endogenous antioxidative potency in the brain of mice and might be effective for the prevention and/or therapy of various reactive oxygen species-related neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease.  相似文献   

7.
Many clinical studies reported that diabetic patients had lower glutathione contents in erythrocytes or plasma. Recently, selenium, an essential trace element with well-known antioxidant characteristics, has been found to have insulin-mimetic properties. But seldom information is available about the influence of selenium on glutathione changes induced by diabetes mellitus in animals. Therefore, this study was designed to compare the impacts of selenite treatment on glutathione (GSH) levels of blood and tissues such as brain, kidney, liver, spleen and testis in mice. Four groups were used in this study: a control group, a diabetic group, a selenite-treated normal group and a selenite-treated diabetic group. Selenite was administered to the mice for 4 weeks with an oral dose of 2 mg kg(-1) day(-1) by gavage. The blood glucose level, and GSH level in blood and tissues were determined. The results show that the selenite-treated diabetic group had significantly lower blood glucose levels than the diabetic group. Moreover, alloxan-induced diabetes significantly decreased GSH levels in blood, kidney, liver and testis compared to the controls. Selenite treatment of the diabetic mice only improved the GSH levels in liver and brain. On the other hand, selenite administered to the normal mice reduced GSH levels in the liver compared to the controls. In conclusion, this study suggests that selenite treatment of diabetic mice with an effective dose would be beneficial for the antioxidant system of liver and brain although it exerts a toxic effect on the liver of normal mice.  相似文献   

8.
Increased oxidative stress has been implicated in the pathogenesis of dopaminergic neurodegeneration leading to the development of Parkinson's disease. In this study, we investigated whether naphtha[1,2-d]thiazol-2-amine (NTA) may ameliorate haloperidol-induced catalepsy and oxidative damage in mice brain. Haloperidol-induced catalepsy was measured with the standard bar test. The extent of oxidative stress has been evaluated by measuring levels of MDA, GSH and activities of antioxidant enzymes (SOD and GSH-Px) from brain homogenate. Haloperidol treatment significantly induced the catalepsy as observed from increased descent time measured in the bar test. Pretreatment with NTA significantly reduced the catalepsy induced by haloperidol in a dose-dependent manner. The elevated level of MDA in haloperidol-treated mice was significantly decreased by NTA pretreatment. The decreased level of GSH as well as SOD and GSH-Px activities in haloperidol-treated mice were significantly increased by NTA pretreatment. NTA reduces the oxidative stress allowing recovery of detoxifying enzyme activities and controlling free radical production, suggesting a potential role of the drug as an alternative/adjuvant drug in preventing and treating the neurodegenerative diseases, such as Parkinson's disease.  相似文献   

9.
Increased oxidative stress has been implicated in the pathogenesis of dopaminergic neurodegeneration leading to the development of Parkinson's disease. In this study, we investigated whether naphtha[1,2-d]thiazol-2-amine (NTA) may ameliorate haloperidol-induced catalepsy and oxidative damage in mice brain. Haloperidol-induced catalepsy was measured with the standard bar test. The extent of oxidative stress has been evaluated by measuring levels of MDA, GSH and activities of antioxidant enzymes (SOD and GSH-Px) from brain homogenate. Haloperidol treatment significantly induced the catalepsy as observed from increased descent time measured in the bar test. Pretreatment with NTA significantly reduced the catalepsy induced by haloperidol in a dose-dependent manner. The elevated level of MDA in haloperidol-treated mice was significantly decreased by NTA pretreatment. The decreased level of GSH as well as SOD and GSH-Px activities in haloperidol-treated mice were significantly increased by NTA pretreatment. NTA reduces the oxidative stress allowing recovery of detoxifying enzyme activities and controlling free radical production, suggesting a potential role of the drug as an alternative/adjuvant drug in preventing and treating the neurodegenerative diseases, such as Parkinson's disease.  相似文献   

10.
A decrease in GSH levels, the main redox regulator, can be observed in neurodegenerative diseases as well as in schizophrenia. In search for substances able to increase GSH, we evaluated the ability of curcumin (polyphenol), quercetin (flavonoid), and tert -butylhydroquinone (tBHQ) to up-regulate GSH-synthesizing enzymes. The gene expression, activity, and product levels of these enzymes were measured in cultured neurons and astrocytes. In astrocytes, all substances increased GSH levels and the activity of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). In neurons, curcumin and to a lesser extent tBHQ increased GCL activity and GSH levels, while quercetin decreased GSH and led to cell death. In the two cell types, the gene that showed the greatest increase in its expression was the one coding for the modifier subunit of GCL (GCLM). The increase in mRNA levels of GCLM was 3 to 7-fold higher than that of the catalytic subunit. In astrocytes from GCLM-knock-out mice showing low GSH (−80%) and low GCL activity (−50%), none of the substances succeeded in increasing GSH synthesis. Our results indicate that GCLM is essential for the up-regulation of GCL activity induced by curcumin, quercetin and tBHQ.  相似文献   

11.
During the scavenging of free radicals flavonoids are oxidized to electrophilic quinones. Glutathione (GSH) can trap these quinones, thereby forming GSH-flavonoid adducts. The aim of this study was to compare the stability of the GSH-flavonoid adduct of 7-mono-O-(β-hydroxyethyl)rutoside (monoHER) with that of quercetin. It was found that GSH-quercetin reacts with the thiol N-acetyl-L-cysteine (NAC) to form NAC-quercetin, whereas GSH-monoHER does not react with NAC. In addition, the adduct of the monoHER quinone with the dithiol dithiothreitol (DTT) is relatively stable, whereas the DTT-quercetin adduct is readily converted into quercetin and DTT disulfide. These differences in reactivity of the thiol-flavonoid adducts demonstrate that GSH-monoHER is much more stable than GSH-quercetin. This difference in reactivity was corroborated by molecular quantum chemical calculations. Thus, although both flavonoid quinones are rapidly scavenged by GSH, the advantage of monoHER is that it forms a stable conjugate with GSH, thereby preventing a possible spread of toxicity. These findings demonstrate that even structurally comparable flavonoids behave differently, which will be reflected in the biological effects of these flavonoids.  相似文献   

12.
目的:探讨复方中药提取物对大鼠脑组织自由基代谢和抗氧化系统能力的影响机制。方法:选取70只健康Wistar大鼠,随机分为2组(n=35):对照组(N)和服药组(M)。适应性喂养1周,服药组大鼠连续服用8周的复方中药提取物,9周后将2组大鼠分别于安静状态、定量负荷、力竭运动即刻、力竭恢复12 h、力竭恢复24 h状态下处死。分别测定上述2组大鼠在不同功能状态下脑组织中丙二醛(MDA)含量,谷胱甘肽过氧化物酶(GSH-PX)、还原性谷胱甘肽(GSH)、超氧化物歧化酶(SOD)、总抗氧化能力(T-AOC)活性。结果:五种状态下,服药组MDA含量均显著低于对照组,GSH-PX、GSH、SOD、T-AOC活性均不同程度的高于对照组。结论:复方中药提取物可降低不同功能状态下大鼠脑组织中的MDA含量,提高其脑组织GSH-PX、GSH、SOD、T-AOC活性。  相似文献   

13.
Protective effect of various antioxidants, trolox (water soluble analogue of vitamin E), quercetin (bioflavonoid) and glutathione reduced (GSH), was studied following sulphur mustard (SM) intoxication. SM, a blistering agent was administered to Swiss albino female mice through inhalation (1 LC50=42.3 mg/m3 for 1 h duration; 14 days observation for mortality) and percutaneous (1 LD50=154.7 mg/kg; 7 days observation for mortality) routes. The antioxidants were administered three times at the dose of trolox, 500 microg/kg; quercetin, 5 mg/kg and GSH, 400 mg/kg body weight by intraperitoneal injection, one immediately following SM exposure, then once each day for 2 days after SM treatment. The effect of antioxidants on survival, markers of oxidative damage and purine metabolites was investigated. Survival study animals were observed for 14 days. Oxidative markers (in blood, liver and lung) and purine metabolites (in blood and urine) were investigated 72 h after SM treatment. Survival time increased significantly following trolox and quercetin treatments through the inhalation route. Significant decrease in GSH and increase in the level of malondialdehyde (MDA) indicated oxidative damage to liver and lung tissues following SM inhalation and percutaneous exposure. Blood and urinary uric acid, end product of purine metabolism showed an increased following both routes of exposures. The antioxidants, trolox and quercetin protected the liver and lung tissues from oxidative damage caused by SM exposure through inhalation and percutaneous routes. This study showed that antioxidants could enhance survival time, protect liver and lung from oxidative damage and reduce accumulation of purine metabolites in blood following SM intoxication.  相似文献   

14.
《Free radical research》2013,47(12):1462-1472
Abstract

In our in vitro study, we analyzed the effects of incubation of J774A.1 macrophages with reduced glutathione (GSH) and quercetin on the extent of cellular cholesterol efflux by high-density lipoprotein (HDL) or apolipoprotein A1 (apoA1). This combination was the most potent one among other exogenous and endogenous antioxidant combinations, since it significantly increased the extent of HDL-mediated cholesterol efflux from macrophages by 47% versus control cells, whereas quercetin (20 μM) or GSH (200 μM) alone increased it by only 37% or 17%, respectively. Similarly, apoA1-mediated cholesterol efflux was increased by 11% or 22% in quercetin or quercetin + GSH-treated cells, respectively, versus control cells. These stimulatory effects were noted only after 20 h of cell incubation. The combination of quercetin + GSH demonstrated high scavenging capacity of free radicals versus quercetin or GSH alone. In addition, quercetin + GSH significantly decreased macrophage oxidative stress as measured by the scavenging capacity of free radicals in the cells, the formation of reactive oxygen species, and the levels of cellular glutathione and lipid peroxides. There was no significant effect of quercetin + GSH on cellular HDL binding, on ATP-binding cassette A1 (ABCA1) activity, or on ABCG1 messenger RNA (mRNA) levels.

In contrast, mRNA levels for ABCA1 and peroxisome proliferator-activated receptor alpha (PPARα) were both significantly increased by 89% and 93%, respectively, in quercetin + GSH-treated cells versus control cells. Quercetin alone increased the mRNA levels for ABCA1 or PPARα by 42% or 77%, respectively, whereas GSH alone increased it by 22% or 28%, respectively. Mass spectra analysis revealed that oxidized quercetin reacts with GSH to form a new adduct product. We thus conclude that the stimulatory effects of quercetin + GSH on apoA1- or HDL-mediated macrophage cholesterol efflux are related to the ability of GSH to preserve quercetin in its reduced form.  相似文献   

15.
Neuroprotective effect of honokiol (HK), orally administered, on oxidative damage in the brain of mice challenged with N-methyl-d-aspartic acid (NMDA) was examined. HK (1-100 mg/kg) was administered to Institute of Cancer Research (ICR) male mice through a gavage for 3 days consecutively, and on the third day, NMDA (150 mg/kg) was intraperitoneally (i.p.) administered. Administration of NMDA, causing a lethality of approximately 60%, resulted in a significant decrease of total glutathione (GSH) level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. Meanwhile, oral administration of HK (> or = 3 mg/kg) for 3 days reduced the lethality (60%) in NMDA-treated group to 10% level, and alleviated the behavioral signs of NMDA neurotoxicity. Moreover, HK pretreatment restored the levels of total GSH and TBARS in the brain tissue to control levels (p<0.01). Additionally, GSH peroxidase activity in cytosolic portion of brain homogenate was also restored significantly (p<0.01), whereas GSH reductase activity was not. Separately, compared to vehicle-treated control, no significant changes in body and brain weight were observed in mice administered with HK. Based on these results, oral intake of HK is suggested to prevent oxidative stress in the brain of mice.  相似文献   

16.
The inhibition of glutathione (GSH) synthesis by -buthionine-SR-sulfoximine (BSO) causes aggravation of hepatotoxicity of paraquat (PQ), an oxidative-stress inducing substance, in mice. On the other hand, synthesis of metallothionein (MT), a cysteine-rich protein having radical scavenging activity, is induced by PQ, and the induction by PQ is significantly enhanced by pretreatment of mice with BSO. The purpose of present study is to examine whether generation of reactive oxygens is involved in the induction of MT synthesis by PQ under inhibition of GSH synthesis. Administration of PQ to BSO-pretreated mice increased hepatic lipid peroxidation and frequency of DNA single strand breakage followed by manifestation of the liver injury and induction of MT synthesis. Both vitamin E and deferoxamine prevented MT induction as well as lipid peroxidation in the liver of mice caused by administration of BSO and PQ. In cultured colon 26 cells, both cytotoxicity and the increase in MT mRNA level caused by PQ were significantly enhanced by pretreatment with BSO. Facilitation of PQ-induced reactive oxygen generation was also observed by BSO treatment. These results suggest that reactive oxygens generated by PQ under inhibition of GSH synthesis may stimulate MT synthesis. GSH depletion markedly increased reactive oxygen generation induced by PQ, probably due to the reduced cellular capability to remove the radical species produced.  相似文献   

17.
Previous studies indicated that DL-buthionine sulfoximine (DL-BSO), an agent that inhibits the biosynthesis of GSH in liver and other peripheral organs, fails to suppress levels of GSH in the CNS. In the current study, preweanling mice responded to repeated injections of L-BSO with marked declines (79.6-86.5%) of GSH content in brain and spinal cord. In adult mice, the same treatment schedule produced only modest declines (17.8-29.2%) of GSH content in brain and a 55.9% decline in spinal cord. Pretreatment of preweanling mice with L-BSO represents a tool for studying the role of GSH in the CNS.  相似文献   

18.
T Masukawa  M Sai  Y Tochino 《Life sciences》1989,44(6):417-424
To search for a technique to deplete reduced glutathione (GSH) in brain, the influence of various types of compounds on brain GSH levels was investigated in mice. Of the compounds tested, cyclohexene-1-one, cycloheptene-1-one and diethyl maleate were shown to be potent GSH depletors in brain as well as in liver. The depletion of cerebral GSH ranged about 40-60% of control levels at 1 and 3 hr after intraperitoneal injection. Cyclohexene, cycloheptene, phorone, acetaminophen, and benzyl chloride caused mild depletion of cerebral GSH, but buthionine sulfoximine did not alter cerebral GSH levels. Further, intracerebroventricular injection of cyclohexene-1-one and cycloheptene-1-one caused depletion of brain GSH to about 60-80% of control levels at 1 hr after injection, and the effects persisted for at least 6 hr. Under these conditions, hepatic GSH was not altered. These results demonstrated that cyclohexene-1-one and cycloheptene-1-one can cause not only a marked depletion of brain GSH by systemic administration, but also depletion of cerebral GSH by intracerebroventricular injection by virtue of being water-soluble compounds. Thus, methods for depleting brain GSH employing both compounds are available for exploring possible functions of cerebral GSH in in vivo systems.  相似文献   

19.
The aim of this study was to investigate the neuroprotective effects of quercetin in mouse models of traumatic brain injury (TBI) and the potential role of the PGC‐1α pathway in putative neuroprotection. Wild‐type mice were randomly assigned to four groups: the sham group, the TBI group, the TBI+vehicle group and the TBI+quercetin group. Quercetin, a dietary flavonoid used as a food supplement, significantly reduced TBI‐induced neuronal apoptosis and ameliorated mitochondrial lesions. It significantly accelerated the translocation of PGC‐1α protein from the cytoplasm to the nucleus. In addition, quercetin restored the level of cytochrome c, malondialdehyde and superoxide dismutase in mitochondria. Therefore, quercetin administration can potentially attenuate brain injury in a TBI model by increasing the activities of mitochondrial biogenesis via the mediation of the PGC‐1α pathway.  相似文献   

20.
本研究旨在探讨槲皮素体外抗氧化能力以及对高脂日粮小鼠血脂代谢的影响.体外分别测定了槲皮素对DPPH·,·OH和ABTS+·自由基的清除作用.动物实验:将昆明种雄性小鼠32只,随机分为4组,分别饲喂正常、高脂、高脂+0.05g/kg槲皮素、高脂+0.1g/kg槲皮素日粮.9周后测定小鼠肝脏活性氧(Reactive oxygen species,ROS)水平、丙二醛(Malondialdehyde,MDA)含量、抗氧化酶活力及血脂水平.结果表明:槲皮素对DPPH·,·OH和ABTS+·具有较强的清除作用,在一定范围内呈现出明显的剂量增加-效应增强的关系.0.05g/kg槲皮素能显著降低肝脏自由基水平及MDA含量(P<0.05),增强抗氧化能力(P<0.05),改善血脂水平(P<0.05),而0.1g/kg槲皮素效果不显著.结论:0.05g/kg槲皮素可有效提高机体抗氧化能力,缓解高脂膳食造成的氧化应激,改善血脂代谢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号