首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of solvent viscosity on the kinetic parameters of the pyruvate reduction reaction catalyzed by lactate dehydrogenase has been investigated. The viscosity was adjusted by sucrose and glycerol solutions at concentrations from 0 to 44% and from 0 to 63%, respectively. The reaction rate decreased abruptly with an increase in viscosity. The study of different reaction stages (enzyme-substrate complex formation, catalysis, inhibitory complex decomposition, competitive inhibition by chlorine ions) revealed that the catalysis (and the related conformational changes) is the only stage (of the above mentioned) that depends markedly on the solvent viscosity. The reaction is insensitive to the changes in the dielectric properties of the solution induced by the addition of alcohols and dioxane. The observed power dependence of the rate constant on viscosity is explained in terms of Kramer's theory which considers the proton transition through the activation barrier to be a diffusion in the field of random forces. The influence of solvent viscosity on enzymic kinetics indicates a direct relation between solvent dynamics and relevant protein conformational movements.  相似文献   

2.
Viscosity dependence of ethidium-DNA intercalation kinetics   总被引:1,自引:0,他引:1  
The kinetics of ethidium intercalation into double-stranded poly[d(G-C)] were investigated by use of repetitive pressure-jump chemical relaxation at 20 degrees C in low ionic strength (0.1 M NaCl) aqueous buffers containing either glycerol or methanol. The viscosity of the various solvents differed by more than an order of magnitude while other physical properties (e.g., dielectric constant) remained approximately constant. The single-reciprocal kinetic relaxation time (tau -1) increases linearly with DNA concentration. The observed association rate constant is lower in all organic-aqueous mixtures than in water and is inversely proportional to the viscosity. These results provide evidence for an additional step in the intercalation mechanism which is identified as an obligatory DNA conformational change preceding ethidium intercalation. From the data presented, the equilibrium constant of this local conformational change is approximately 10(-3), i.e., greatly favoring the structure incapable of intercalation. The corresponding kinetics were not directly determined; however, in order to be consistent with all of the data the forward and/or reverse rate constants of the conformational change must be larger than the rate of the intercalation reaction. Thus, it is proposed that the rate of the conformational change back to the nonintercalating B-DNA structure is greater than approximately 500 s-1, implying a rate of opening greater than approximately 0.5 s-1, in agreement with other hydrogen exchange and NMR data. The observed overall rate constant for the dissociation of ethidium is inversely proportional to the solvent density, possibly reflecting a dependence on the solvent free volume. The overall volume change of intercalation is less negative in the organic-aqueous solvent mixtures than in water.  相似文献   

3.
Abstract

Previously reported Gibbs ensemble Monte Carlo simulations of vapor-liquid equilibrium in methanol-water and methanol-water-NaCl mixtures are extended to permit study of the microscopic structure of the liquid phases of these systems. The salt effect in a prototypical mixed solvent electrolyte solution (water-methanol-NaCl) is microscopically interpreted in terms of the structural changes undergone by the solvation shells of the ions in the liquid phase of water-methanol-NaCl systems in vapor-liquid equilibrium at constant pressure.  相似文献   

4.
5.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   

6.
Folding of RNA into an ordered, compact structure requires substantial neutralization of the negatively charged backbone by positively charged counterions. Using a native gel electrophoresis assay, we have examined the effects of counterion condensation upon the equilibrium folding of the Tetrahymena ribozyme. Incubation of the ribozyme in the presence of mono-, di- and trivalent ions induces a conformational state that is capable of rapidly forming the native structure upon brief exposure to Mg2+. The cation concentration dependence of this transition is directly correlated with the charge of the counterion used to induce folding. Substrate cleavage assays confirm the rapid onset of catalytic activity under these conditions. These results are discussed in terms of classical counterion condensation theory. A model for folding is proposed which predicts effects of charge, ionic radius and temperature on counterion-induced RNA folding transitions.  相似文献   

7.
We studied the effects of some organic cosolvents (monohydric alcohols and amides) on the reaction of hemoglobin with oxygen. We present evidence showing that our data can be analyzed within the framework of the Monod-Wyman-Changeux model and that the main effect of cosolvents is to alter the T ? R conformational equilibrium of hemoglobin, without significantly affecting the intrinsic oxygen dissociation constants. Following a previously described phenomenological approach, the overall effects have been separated into effects related to the variation of the bulk dielectric constant of the solvent and effects not related to the variation of this constant.  相似文献   

8.
Aspartic acid production by aspartase reaction on ammonium fumarate was carried out in a membrane reactor coupled with electrophoresis. A pressurized, stirred vessel attached with an ultrafiltration membrane was used as a membrane reactor. An electric field was applied across the membrane to preferentially remove the product aspartate from the reactor into the permeate stream. The charged molecule, aspartate, is much smaller than the molecular-weight cutoff of the membrane (10(4)) so that the ions would move freely through pores of the membrane. The concentration of aspartate in the permeate stream is determined by the electromigration velocity of the ions and the permeation rate of solvent (water) through the membrane. The permeation rate of solvent could be controlled by the applied pressure, and the migration velocity of the ions could be controlled by the electric field strength applied. The equilibrium conversion of ammonium fumarate to the aspartate was 70%. In the presence of electric field, the aspartase activity was not disturbed. Also, it is shown that the aspartate concentration in the permeate stream was 20% higher than that in the reaction solution with the permeate flow rate of 0.7 mL/min. The steady-state conversion was 60%. Instead of aspartate, aspartic acid can be recovered directly from the permeate stream by controlling the circulation of buffer electrolyte in the anode compartment.  相似文献   

9.
The self-association of alpha-chymotrypsin and its di-isopropyl phosphoryl derivative in in I0.03 sodium phophate buffer, pH7,9, was investigated by velocity sedimentation, equilibrium sedimentation and difference gel chromatography. No differences between the native and chemically modified enzyme were observed in the ultracentrifuge studies, and only a marginal (0.6%) difference in weight-average elution volume was detected by difference gel chromatography of 5g/litre solutions on Sephadex G-75. From quantitative analyses of sedimentation velocity and sedimentation-equilibrium distributions obtained with iPr2P (di-isopropylphosphoryl)-chymotrypsin, the polymerizing system is postulated to involve an indefinite association of dimer (with an isodesmic association constant of 0.68 litre/g) that is formed by a discrete dimerization step with equilibrium constant 0.25 litre/g. In addition to providing the best fit of the experimental results, this model of chymotrypsin polymerization at low ionic strength is also consistent with an earlier observation that dimer formation is a symmetrical head-to-head phenomenon under conditions of higher ionic strength (I0.29, pH7.9) where association is restricted to a monomer-dimer equilibrium. It is proposed that the dimerization process is essentially unchanged by variation in ionic strength at pH7.9, and that higher polymers are formed by an entirely different mechanism involving largely electrostatic interactions between dimeric species.  相似文献   

10.
The conformational transition of disulfides in bovine serum albumin (BSA) induced by electrochemical redox reaction of disulfides were monitored by in-situ circular dichroism (CD) spectroelectrochemistry, with a long optical path thin layer cell and analyzed by a singular value decomposition least square (SVDLS) method. Electrochemical reduction of disulfides drives the left-handed conformation of disulfides changed into the right-handed. At open circuit, eight of the 17 disulfides were of left-handed conformation. Four of the 17 disulfides took part in the electrochemical reduction with an EC mechanism. Only one-fourth of the reduced disulfides returned to left-handed conformation in the re-oxidation process. Some parameters of the electrochemical reduction process, i.e. the number of electrons transferred and electron transfer coefficient, n = 8, alpha n = 0.15, apparent formal potential, E1(0') = -0.65(+/-0.01) V, standard heterogeneous electron transfer rate constant, k1(0) = (2.84 +/- 0.14) x 10(-5) cm s(-1) and chemical reaction equilibrium constant, Kc = (5.13 +/- 0.12) x 10(-2), were also obtained by double logarithmic analysis based on the near-UV absorption spectra with applied potentials.  相似文献   

11.
A method that allows the quantitative determination of reaction volumes from sedimentation velocity experiments in an analytical ultracentrifuge is presented. Combined with a second method for detecting pressure-induced depolymerization, general characteristics of polymer distributions may be probed. We show that it is possible to determine if a sample is in an equilibrium or metastable state of subunit association. Our approach to probe macromolecular aggregation systems by small pressure perturbations is not restricted to the use of centrifuges. This method has been applied to characterize certain aspects of the polymerization of tobacco mosaic virus coat protein (TMVP). There are at least two helical polymer conformations in RNA-free coat protein rods. The smaller, helix I, polymers are limited to sizes below about 70 subunits (four to five helical turns) and undergo some kind of cooperative conformational change before further subunits may be added indefinitely. In contrast to helix I, the larger helix II polymers occur as broader and skewed size distributions. Under moderately strong polymerization conditions, the equilibrium state can contain both types of helical rods. The reaction volume for the addition of trimers is -220 ml/mol for both types of helical polymers. These results are compared with the results of previous thermodynamic analyses of TMVP polymerization.  相似文献   

12.
Isolated mitochondria suspended in an aerobic medium with 3-hydroxybutyrate or succinate serving as electron donor attain a stationary state with vanishing net flow of H+ ions (state 4). Adding valinomycin to such a suspension in the presence of various concentrations of K+ ions and a weak acid system such as acetate or phosphate creates new stationary states for the mitochondria which are characterized by a constant influx of K+ ions, while the net flow of H+ ions again vanishes due to the recycling of these ions by the weak acid system. Sufficiently low concentrations of K+ ions (less than 4 mM) cause these stationary states to last long enough for a separation of the mitochondria by centrifugation. The difference in electrochemical potential for H+ ions can then be determined by means of the partitioning of radioactively labelled markers. Suitable procedures to correct for binding of the markers are described. It is found that, for a constant affinity of the electron in the suspending medium, electron flow and the flow of K+ ions, which indicates the flow of pumped H+ ions, are linearly dependent on the electrochemical potential difference of H+ ions. The phenomenological coefficients obtained from these correlations are discussed with respect to the contributions of additive constants in the linear relations. It is found that, under the present experimental condition, such constants most likely vanish thus yielding symmetric flow-force relations. It is concluded that the redox-driven H+ pumps are not tightly coupled due to molecular slipping in the pumps and that the molecular stoichiometry is 2 H+ ions/electron for coupling site I and 4 H+ ions/electron for coupling sites II and III together.  相似文献   

13.
In situ measurements of the growth of solid electrolyte interphase (SEI) layer on silicon and the lithiation‐induced volume changes in silicon in lithium ion half‐cells are reported. Thin film amorphous silicon electrodes are fabricated in a configuration that allows unambiguous separation of the total thickness change into contribution from SEI thickness and silicon volume change. Electrodes are assembled into a custom‐designed electrochemical cell, which is integrated with an atomic force microscope. The electrodes are subjected to constant potential lithiation/delithiation at a sequence of potential values and the thickness measurements are made at each potential after equilibrium is reached. Experiments are carried out with two electrolytes—1.2 m lithium hexafluoro‐phosphate (LiPF6) in ethylene carbonate (EC) and 1.2 m LiPF6 in propylene carbonate (PC)—to investigate the influence of electrolyte composition on SEI evolution. It is observed that SEI formation occurs predominantly during the first lithiation and the maximum SEI thickness is ≈17 and 10 nm respectively for EC and PC electrolytes. This study also presents the measured Si expansion ratio versus equilibrium potential and charge capacity versus equilibrium potential; both relationships display hysteresis, which is explained in terms of the stress–potential coupling in silicon.  相似文献   

14.
The intercalation of solvated sodium ions into graphite from ether electrolytes was recently discovered to be a surprisingly reversible process. The mechanisms of this “cointercalation reaction” are poorly understood and commonly accepted design criteria for graphite intercalation electrodes do not seem to apply. The excellent reversibility despite the large volume expansion, the small polarization and the puzzling role of the solid electrolyte interphase (SEI) are particularly striking. Here, in situ electrochemical dilatometry, online electrochemical mass spectrometry (OEMS), a variety of other methods among scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) as well as theory to advance the understanding of this peculiar electrode reaction are used. The electrode periodically “breathes” by about 70–100% during cycling yet excellent reversibility is maintained. This is because the graphite particles exfoliate to crystalline platelets but do not delaminate. The speed at which the electrode breathes strongly depends on the state of discharge/charge. Below 0.5 V versus Na+/Na, the reaction behaves more pseudocapacitive than Faradaic. Despite the large volume changes, OEMS gas analysis shows that electrolyte decomposition is largely restricted to the first cycle only. Combined with TEM analysis and the electrochemical results, this suggests that the reaction is likely the first example of a SEI‐free graphite anode.  相似文献   

15.
Swelling and flow properties of tubular poly(vinyl alcohol) (PVA) hydrogels prepared with the cooling method were investigated using an inflation testing method. When the tubular hydrogel in liquid paraffin was inflated by using liquid paraffin as a pressure transmitting medium, namely in the case that the liquids inside and outside the gel are both liquid paraffin (P/P combination), the gel showed a slight volume change determined by Poisson's ratio of the gel. When the gel in water was inflated by liquid paraffin (P/W combination), the gel swelled to large extent compared with the case of P/P. The hydrogel in W/W combination, namely in the situation that the gel was immersed in water and also inflated by water, showed a very large volume change if the comparison was done at the same pressure. The origin of the volume change in P/P, P/W and W/W combinations is discussed. The volume change in P/P was governed by the Poisson ratio as a material constant (mu 0) of the PVA gels, and the gels swelled by the change in the application of pressure (or deformation) in P/W. The volume change in W/W was closely related to the flow of solvent in the gel.  相似文献   

16.
The current view of the cytoplasm as a 'bustling and well-organized metropolitan city' raises the issue of how physicochemical forces control the macromolecular interactions and transport of metabolites and energy in the cell. Motivated by studies on bacterial osmosensors, we argue that charged cytoplasmic macromolecules are stabilized electrostatically by their ionic atmospheres. The high cytoplasmic crowding (25-50% of cell volume) shapes the remaining cell volume (50-75%) into transient networks of electrolyte pathways and pools. The predicted 'semi-conductivity' of the electrolyte pathways guides the flow of biochemical ions throughout the cytoplasm. This metabolic and signaling current is powered by variable electrochemical gradients between the pools. The electrochemical gradients are brought about by cellular biochemical reactions and by extracellular stimuli. The cellular metabolism is thus vectorial not only across the membrane but also throughout the cytoplasm.  相似文献   

17.
Microtubule assembly has been studied turbidometrically in supernatant fluids prepared from rat brain by high-speed centrifugation. It was confirmed that assembly occurred in the absence of added GTP. Zinc ions (500 microM, but in the presence of 1 mM EGTA) stimulated assembly under these conditions. Zinc-stimulated assembly produced microtubules with normal characteristics, as judged by electron microscopy, SDS-polyacrylamide gel electrophoresis and inhibition of assembly by fructose-6-phosphate or colchicine. However, microtubules formed in the presence of such zinc concentrations were more stable to cold than controls, although the rate constant for the disassembly reaction was unchanged. Neither the stimulation of assembly by zinc nor the effect on cold stability was affected by trifluoperazine suggesting that a calmodulin-related mechanism is not involved. Microtubule "seeds" had little effect in the presence of zinc, suggesting that it may be acting on the nucleation phase of the assembly reaction. This was supported by the findings that zinc reduced the critical concentration of brain supernatant necessary for assembly and that zinc did not affect the rate constant for assembly. The results suggest zinc can in some way stabilize microtubules; possible mechanisms are discussed.  相似文献   

18.
Subtilisin Carlsberg, an alkaline protease from Bacillus licheniformis, was modified with polyoxyethylene (PEG) or aerosol-OT (AOT), and the solubility, conformation, and catalytic activity of the modified subtilisins in some organic media were compared under the same conditions. The solubility of modified subtilisins depended on the solubility of the modifier. On the other hand, the conformational changes depended on the solubility, rather than the property, of the modifier. When the modified subtilisin was dissolved in water-miscible polar solvents such as dimethylsulfoxide, acetonitrile, and tetrahydrofuran, significant conformational changes occurred. When modified subtilisin was dissolved in water-immiscible organic solvents, such as isooctane and benzene, the solvent did not induce significant conformational changes. The catalytic activity in the transesterification reaction of the N-acetyl-L-phenylalanine ethylester of the modified subtilisin in organic solvents was higher than that of native subtilisin. The high activity of modified subtilisin was thought to be due to a homogeneous reaction by the dissolved enzymes.  相似文献   

19.
Proteins in cells fold via a number of intermediates. These intermediates are quite important as they guide the protein to attain its unique native conformation. To solve the immensely difficult problem of protein folding, it is necessary to characterize intermediates which will unravel the mystery of the steps involved in the proper folding of proteins. Cytochromes-c (cyts-c) have played an important role in studies of the earliest events and intermediates in protein folding. They have always been considered as model proteins for protein folding studies due to their intrinsic properties that can be measured by multiple probes. A large number of different solvent conditions have been employed to obtain equilibrium intermediates of cyts-c. These intermediates show structural heterogeneity which is mainly due to the different solvent conditions used to induce them. In this review we present results of conformational and thermodynamic characterization of equilibrium intermediates (molten globules and pre-molten globules) of the mammalian cyts-c under different solvent conditions.  相似文献   

20.
The effects of selection by a small molecule, when binding to a protein, of a particular conformation from an equilibrium stereopopulation on the characteristics of the pH-dependence of reaction with a reactivity probe or substrate were determined by analysis of an appropriate kinetic model. For reaction in one protonic state containing an equilibrium mixture of two conformational isomers, the pH-second-order rate constant (k) profile is of conventional sigmoidal form. The apparent pKa value is a composite of the pKa values of the two conformational states. The value of pKapp. for a given enzyme under given experimental conditions will always be the same (provided that the site-specificity assumed in the model is maintained) irrespective of whether only one conformation reacts or both react, with the same or with different rate constants. The experimentally determined pH-independent rate constant (kapp.) is an average of the reactivities of the two conformational states weighted in favour of the predominant form. The presence of an additional but unreactive conformational state also affects the value of kapp. The possibility that overlapping acid dissociations that affect the reactivity of the enzyme might provide pH-k profiles often indistinguishable in practice from simple sigmoidal dissociation curves and subject to variability in apparent pKa values was evaluated by a simulation study. If two reactive protonic states of the enzyme respond differently to changes in the structure of the substrate or site-specific reactivity probe, differences in apparent pKa values of up to approx. 1 unit can be exhibited without deviation from sigmoidal behaviour being reliably observed. Differences in apparent pKa values observed in some site-specific reactions of papain and their possible consequences for its catalytic mechanism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号