首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebral endothelial cells in the rat, pig, and, most recently, human have been shown to express several types of receptors specific for glutamate. High levels of glutamate disrupt the cerebral endothelial barrier via activation of N-methyl-d-aspartate (NMDA) receptors. We have previously suggested that this glutamate-induced barrier dysfunction was oxidant dependent. Here, we provide evidence that human cerebral endothelial cells respond to glutamate by generating an intracellular oxidant stress via NMDA receptor activation. Cerebral endothelial cells loaded with the oxidant-sensitive probe dihydrorhodamine were used to measure intracellular reactive oxygen species (ROS) formation in response to glutamate receptor agonists, antagonists, and second message blockers. Glutamate (1 mM) significantly increased ROS formation compared with sham controls (30 min). This ROS response was significantly reduced by 1) MK-801, a noncompetitive NMDA receptor antagonist; 2) 8-(N,N-diethylamino)-n-octyl-3,4,5-trimethoxybenzoate, an intracellular Ca(2+) antagonist; 3) LaCl(3), an extracellular Ca(2+) channel blocker; 4) diphenyleiodonium, a heme-ferryl-containing protein inhibitor; 5) itraconazole, a cytochrome P-450 3A4 inhibitor; and 6) cyclosporine A, which prevents mitochondrial membrane pore transition required for mitochondrial-dependent ROS generation. Our results suggest that the cerebral endothelial barrier dysfunction seen in response to glutamate is Ca(2+) dependent and may require several intracellular signaling events mediated by oxidants derived from reduced nicotinamide adenine dinucleotide oxidase, cytochrome P-450, and the mitochondria.  相似文献   

2.
Nicotine increases the permeability of the blood-brain barrier in vivo. This implies a possible role for nicotinic acetylcholine receptors in the regulation of cerebral microvascular permeability. Expression of nicotinic acetylcholine receptor subunits in cerebral microvessels was investigated with immunofluorescence microscopy. Positive immunoreactivity was found for receptor subunits alpha3, alpha5, alpha7, and beta2, but not subunits alpha4, beta3, or beta4. Blood-brain barrier permeability was assessed via in situ brain perfusion with [14C]sucrose. Nicotine increased the rate of sucrose entry into the brain from 0.3 +/- 0.1 to 1.1 +/- 0.2 microl.g(-1).min(-1), as previously described. This nicotine-induced increase in blood-brain barrier permeability was significantly attenuated by both the blood-brain barrier-permeant nicotinic antagonist mecamylamine and the blood-brain barrier-impermeant nicotinic antagonist hexamethonium to 0.5 +/- 0.2 and 0.3 +/- 0.2 microl.g(-1).min(-1), respectively. These data suggest that nicotinic acetylcholine receptors expressed on the cerebral microvascular endothelium mediate nicotine-induced changes in blood-brain barrier permeability.  相似文献   

3.
We previously reported that electromagnetic fields (EMFs) [GSM 1800 standard (Global System for Mobile Communications, 1800 MHz)] increased sucrose permeation across the blood-brain barrier (BBB) in vitro. The cell culture model used in our previous study was comprised of rat astrocytes in coculture with porcine brain microvascular endothelial cells (PBECs). In this study, after optimization of cell culture conditions, distinctly improved barrier tightness was observed, accompanied by a loss of susceptibility to EMF-related effects on BBB permeability. Cell cultures were exposed for 1-5 days at an average specific absorption rate (SAR) of 0.3 W/kg in the identical exposure system as described before. To quantify barrier tightness, sucrose permeation across exposed PBEC was measured and compared to values of sham exposed cells and to a control group. Additionally, observations in the BBB coculture system were complemented by similar experiments using two other in vitro models, composed of PBEC monocultures with or without serum. These three models display distinctly higher barrier tightness than the previously used system. In all three BBB models, sucrose permeation across the cell layers remained unaffected by exposure to a GSM 1800 field for up to 5 days. We thus could not confirm enhanced permeability of the BBB in vitro after EMF exposure as reported before since the in vitro barrier tightness in these experiments is now more like that of the in vivo situation.  相似文献   

4.
Tolerance to otherwise lethal cerebral ischemia in vivo or to oxygen-glucose deprivation (OGD) in vitro can be induced by prior transient exposure to N-methyl-D-aspartic acid (NMDA): preconditioning in this manner activates extrasynaptic and synaptic NMDA receptors and can require bringing neurons to the "brink of death." We considered if this stressful requirement could be minimized by the stimulation of primarily synaptic NMDA receptors. Subjecting cultured cortical neurons to prolonged elevations in electrical activity induced tolerance to OGD. Specifically, exposing cultures to a K(+)-channel blocker, 4-aminopyridine (20-2500 microm), and a GABA(A) receptor antagonist, bicuculline (50 microm) (4-AP/bic), for 1-2 days resulted in potent tolerance to normally lethal OGD applied up to 3 days later. Preconditioning induced phosphorylation of ERK1/2 and CREB which, along with Ca(2+) spiking and OGD tolerance, was eliminated by tetrodotoxin. Antagonists of NMDA receptors or L-type voltage-gated Ca(2+) channels (L-VGCCs) applied during preconditioning decreased Ca(2+) spiking, phosphorylation of ERK1/2 and CREB, and OGD tolerance more effectively when combined, particularly at the lowest 4-AP concentration. Inhibiting ERK1/2 or Ca(2+)/calmodulin-dependent protein kinases (CaMKs) also reduced Ca(2+) spiking and OGD tolerance. Preconditioning resulted in altered neuronal excitability for up to 3 days following 4-AP/bic washout, based on field potential recordings obtained from neurons cultured on 64-channel multielectrode arrays. Taken together, the data are consistent with action potential-driven co-activation of primarily synaptic NMDA receptors and L-VGCCs, resulting in parallel phosphorylation of ERK1/2 and CREB and involvement of CaMKs, culminating in a potent, prolonged but reversible, OGD-tolerant phenotype.  相似文献   

5.
This in vivo study, aimed at detecting the N-methyl-D-aspartate (NMDA) evoked Ca(2+)-induced Ca(2+) release from intracellular stores in the neonatal rat brain, demonstrates that the application of 5 mM N-methyl-D-aspartate via a microdialysis probe for 20 min to the dentate gyrus (DG) of halotane-anesthetized 7 day-old (postnatal day 7, PND 7) rats induces a prolonged decrease in Ca(2+) concentration in an initially calcium-free dialysis medium, indicative of a drop in the extracellular concentration of Ca(2+) and Ca(2+) influx to neurons. In parallel experiments, a huge NMDA-evoked release of 45Ca from the pre-labeled endogenous Ca(2+) pool was observed and interpreted as the expression of intracellular Ca(2+) release. Dantrolene (100 microM) significantly inhibited the NMDA-induced 45Ca release, whereas 250 microM ryanodine exerted an unspecific biphasic effect. Autoradiographic and immunocytochemical detection of ryanodine receptors and calbindin D(28K), respectively, in the hippocampal region of PND 7 rats displayed a pronounced expression of [3H]ryanodine binding sites in the DG, but only a slight immunoreactivity of calbindin D(28K). Plastic changes in neurons or excitotoxic neuronal damage induced by the activation of NMDA receptors are mediated by Ca(2+) signals, resulting from an influx of extracellular Ca(2+), and also in some neurons, from the release of intracellular Ca(2+). Our previous in vivo microdialysis experiments visualized NMDA-evoked 45Ca release in the adult rat dentate gyrus, attributable to Ca(2+)-induced Ca(2+) release from the ryanodine-sensitive pool. An additional role of calbindin in the mechanism of this phenomenon has been suggested. This aspect has not been studied in vivo in newborn rats. Our present results indicate that the release of 45Ca from the prelabeled intracellular, dantrolene-sensitive Ca(2+) pool in the DG neurons of immature rats, most probably representing a phenomenon of Ca(2+)-induced Ca(2+) release, significantly participates in the generation of NMDA receptor-mediated intracellular Ca(2+) signals, whereas the role of calbindin D(28K) in the mechanism of 45Ca release is negligible.  相似文献   

6.
The role of second messengers in the regulation of protein phosphorylation was studied in microvessels isolated from rat cerebral cortex. The phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the kinetics of 32P incorporation into specific protein substrates were evaluated by computer-aided x-ray film densitometry. With the use of this method, Ca2+-calmodulin (CAM)-, Ca2+/phospholipid (PK C)-, cyclic GMP (cGMP)-, and cyclic AMP (cAMP)-dependent protein kinases were detected. CAM-dependent protein kinase proved to be the major phosphorylating enzyme in the microvascular fraction of the rat cerebral cortex; the activity of cGMP-dependent protein kinase was much higher than that of the cAMP-dependent one. Autophosphorylation of both the alpha- and beta-subunits of CAM-dependent protein kinase and the proteolytic fragment of the PK C enzyme was also detected. The kinetics of phosphorylation of the individual polypeptides indicate the presence in the cerebral endothelium of phosphoprotein phosphatases. The phosphorylation of proteins in the cerebral capillaries was more or less reversible; the addition of second messengers initiated a very rapid increase in 32P incorporation, followed by a slow decrease. Because the intracellular signal transducers like Ca2+ and cyclic nucleotides are frequently regulated by different vasoactive substances in the endothelial cells, the modified phosphorylation evoked by these second messengers may be related in vivo to certain changes in the transport processes of the blood-brain barrier.  相似文献   

7.
This study investigated the effects of streptozotocin-induced diabetes on the functional integrity of the blood-brain barrier in the rat at 7, 28, 56, and 90 days, using vascular space markers ranging in size from 342 to 65,000 Da. We also examined the effect of insulin treatment of diabetes on the formation and progression of cerebral microvascular damage and determined whether observed functional changes occurred globally throughout the brain or within specific brain regions. Results demonstrate that streptozotocin-induced diabetes produced a progressive increase in blood-brain barrier permeability to small molecules from 28 to 90 days and these changes in blood-brain barrier permeability were region specific, with the midbrain most susceptible to diabetes-induced microvascular damage. In addition, results showed that insulin treatment of diabetes attenuated blood-brain barrier disruption, especially during the first few weeks; however, as diabetes progressed, it was evident that microvascular damage occurred even when hyperglycemia was controlled. Overall, results of this study suggest that diabetes-induced perturbations to cerebral microvessels may disrupt homeostasis and contribute to long-term cognitive and functional deficits of the central nervous system.  相似文献   

8.
The actions of the excitatory amino acid N-methyl-D-aspartate (NMDA) on the accumulation of 3H-inositol polyphosphate isomers in rat cerebral cortex slices have been examined over short (less than 5 min) incubation periods. NMDA caused the dose-dependent accumulation of only [3H]inositol monophosphate and [3H]inositol bisphosphate (maximal effect between 0.3 and 1 mM), with no increase in [3H]inositol trisphosphate ([3H]InsP3) and [3H]inositol tetrakisphosphate ([3H]InsP4). HPLC analysis confirmed this, showing no increases in the breakdown products of [3H]Ins(1,3,4,5)P4. When present with the muscarinic agonist carbachol (1 mM), high concentrations of NMDA (1 mM) could almost totally inhibit carbachol-induced accumulation of 3H-inositol polyphosphates. In contrast, at lower concentrations of NMDA (10 microM), the inhibitory effect was replaced with a synergistic accumulation of inositol polyphosphates, especially [3H]InsP4 and [3H]InsP3. The inhibitory effects of NMDA were only apparent when extracellular Ca2+ was present, although incubation in media with no added Ca2+ resulted in somewhat reduced stimulatory responses to NMDA alone, but suppressed totally the inhibitory effects of 1 mM NMDA and reduced the synergistic effects of 10 microM NMDA on carbachol responses. These studies, therefore, reveal Ca(2+)-dependent effects of NMDA indicative of indirect mechanisms of action and show that care must be made in interpreting the effects of NMDA on phosphoinositide metabolism unless the inositol polyphosphate composition has been fully characterised.  相似文献   

9.
Pantothenic Acid Transport Through the Blood-Brain Barrier   总被引:2,自引:2,他引:0  
The unidirectional influx of D-pantothenic acid (PA) across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured with an in situ rat brain perfusion technique using [3H]D-PA (1.1 Ci/mmol). PA was transported across the blood-brain barrier by a saturable system that could be described by a Michaelis-Menten transport model with a half-saturation concentration and maximal influx rate of 19 microM and 0.21 nmol/g of brain/min, respectively. PA (0.3 microM) transport through the blood-brain barrier was significantly inhibited by probenecid, nonanoic acid, and biotin (all less than or equal to 0.25 mM), but not by penicillin G, pyruvate, beta-hydroxybutyrate, L-leucine (all 1 mM), or poly-L-lysine HBr (1 mg/ml). Probenecid (0.25 mM), nonanoic acid (0.5 mM), and PA (1.0 mM) did not inhibit [3H]L-leucine transport through the blood-brain barrier, whereas 30 microM-L-leucine inhibited [3H]leucine transport to 23% of control values. Thus, PA is transported through the blood-brain barrier by a low-capacity, saturable transport system with a half-saturation concentration approximately 10 times the plasma PA concentration. Although involved in the transfer of PA from blood into brain, this system does not play an important regulatory role in the synthesis of CoA from PA in brain.  相似文献   

10.
Mucoid exopolysaccharide (MEP) obtained from Pseudomonas aeruginosa 579 was suspended in 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) pH 7.2 containing 0.1-10.0 mM of CaCl2.2H2O or MgCl2.4H2O. MEP treated with HEPES or < 5.0 mM of the Ca2+ or Mg2+ salts remained soluble and bound tobramycin in an equilibrium dialysis bioassay. MEP treated with 5.0 or 10.0 mM of the Ca2+ or Mg2+ salts did not bind tobramycin. Five and 10 mM Ca(2+)-treated MEP precipitated but Mg(2+)-treated MEP did not. Pseudomonas aeruginosa 579 biofilms formed using a defined growth medium having < 1 mM Ca2+ or Mg2+ were treated for 1 h with 10 mM HEPES +/- 5.0 mM CaCl2.2H2O or MgCl2.4H2O, prior to an 8-h exposure to HEPES, or the defined growth medium, +/- 125 micrograms/mL of tobramycin. The tobramycin kill kinetics for the HEPES-, Mg(2+)-, and Ca(2+)-treated biofilms were similar and gradual from T = 0-6 h. The viability of the HEPES- and Mg(2+)-treated populations declined sharply (from 6 to 8 h). Bacteria dispersed from the MEP in control biofilms at 0 and 8 h did not grow in the presence of 7.81 micrograms/mL of tobramycin. Thus, binding of tobramycin of P. aeruginosa 579 MEP may not be as influential to the impediment of tobramycin diffusion as is the steric hindrance imposed by the Ca2+ condensation of the polymer.  相似文献   

11.
Chronic exposure of primary neuronal cultures to ethanol has been shown to potentiate N-methyl-D-aspartate (NMDA) receptor-mediated processes, such as nitric oxide (NO) formation and excitotoxicity. In the present study, we compared the effects of acute ethanol and acetaldehyde on NMDA receptor-mediated excitotoxicity and NO production in primary cultures of rat cortical neurons. The delayed cell death induced by NMDA (300 mM, 25 min) was evaluated by morphological examination and by measuring the release of the cytotoxic indicator, lactate dehydrogenase, in the culture media 24 hours after the NMDA exposure. The accumulation of nitrite, as an index of NO production, was also measured 24 hours after NMDA treatment. NMDA caused a dose-dependent cell death and nitrite accumulation, both effects were blocked by pretreatment of MK-801 (100 microM). Acute exposure to ethanol (1-1000 mM) or acetaldehyde (0.1-1 mM) for 35 minutes did not affect neuronal viability in the following 24-hr period. However, acute exposure to acetaldehyde (> or =10 mM) was neurotoxic. Neither ethanol nor acetaldehyde changed basal nitrite levels in the culture media. Acute ethanol (50-400 mM, 10 min) given before the NMDA treatment (25 min) resulted in a concentration-dependent suppression of the delayed cell death. The NMDA-induced NO production was, however, not affected by ethanol. Neither the NMDA excitotoxicity nor NO production was affected by acute ethanol given after NMDA treatment. Acute acetaldehyde (0.01-0.5 mM, 10 min) given before or after NMDA treatment had no effect on delayed NMDA neurotoxicity and NO production. Our data suggest that acute exposure to ethanol is not neurotoxic and is even protective against delayed NMDA-excitotoxicity when given before but not after NMDA treatment. Neither NO nor metabolism of ethanol to acetaldehyde is required for ethanol-mediated suppression of NMDA excititoxicity. Acetaldehyde, on the other hand, is toxic by itself at low concentrations (> or =10 mM). Furthermore, acute exposure to non-toxic concentrations of acetaldehyde could not protect cortical neurons against NMDA-induced excitotoxicity.  相似文献   

12.
We have previously shown the possible involvement of mitochondrial membrane potential disruption in the mechanisms underlying the neurotoxicity seen after activation of N-methyl-d-aspartate (NMDA) receptors (NMDAR) in primary cultured rat hippocampal neurons. In this study, we attempted to demonstrate a pivotal role of mitochondrial uncoupling protein-2 (UCP2) as a determinant of the NMDA neurotoxicity by using acquired NMDAR channels artificially orchestrated in HEK293 cells. In cells with overexpression of UCP2, immunoreactive UCP2 was exclusively detected at intracellular locations stained with the mitochondrial marker MitoTracker. In cells with acquired NMDAR channels, exposure to either NMDA or the calcium ionophore A23187 similarly led to a significant increase in cytosolic Ca(2+) levels determined by Fluo-3 imaging irrespective of the overexpression of UCP2. By contrast, NMDA, but not A23187, was significantly more effective in increasing mitochondrial Ca(2+) levels determined by Rhod-2 fluorescence imaging in cells transfected with NMDAR subunit and UCP2 expression vectors than in those without UCP2 overexpression. Overexpression of UCP2 significantly increased the number of cells stained with propidium iodide in cultures with acquired NMDAR channels, but failed to significantly affect that in cells exposed to A23187. Immunocytochemical and immunoprecipitation analyses similarly revealed the possible interaction between GluN1 subunit and UCP2 in HEK293 cells with acquired NMDAR channels and UCP2 overexpression. These results suggest that UCP2 could play a role as a determinant of the neurotoxicity mediated by NMDAR through a mechanism related to the unidentified interaction with the essential GluN1 subunit toward modulation of mitochondrial Ca(2+) levels in neurons.  相似文献   

13.
The unidirectional transport of [3H]myo-inositol across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured using an in situ rat brain perfusion technique. Myo-inositol was transported across the blood-brain barrier by a low capacity, saturable system with a one-half saturation concentration of 0.1 mM. The permeability surface-area product was 6.2×10–5S–1 with a myo-inositol concentration of 0.02 mM in the perfusate. The myo-inositol stereoisomer scyllo-inositol but not (+)-chiro-inositol (both 1 mM) inhibited myo-inositol transfer through the blood-brain barrier. These observations provide evidence that myo-inositol is transferred through the blood-brain barrier by simple diffusion and a stereospecific, saturable transport system.  相似文献   

14.
The unidirectional influx of hypoxanthine across cerebral capillaries, the anatomical locus of the blood=brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]hypoxanthine. Hypoxanthine was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 0.4 mM. The permeability-surface area product was 3×10–4 sec–1 with a hypoxanthine concentration of 0.02 M in the perfusate. Adenine (4 mM) and uracil and theophylline (both 10 mM), but not inosine (10 mM) or leucine (1 mM), inhibited hypoxanthine transfer through the blood-brain barrier. Thus, hypoxanthine is transported through the blood-brain barrier by a high-capacity, saturable transport system with a half-saturation concentration about 100 times the plasma hypoxanthine concentration. Although involved in the transport hypoxanthine from blood into brain, this system is not powerful enough to transfer important quantities of hypoxanthine from blood into brain.  相似文献   

15.
Hyperhomocysteinemia is a risk factor in neurodegeneration. It has been suggested that apart from disturbances in methylation processes, the mechanisms of this effect may include excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptors. In this study we demonstrate that apart from NMDA receptors, also group I metabotropic glutamate receptors participate in acute homocysteine (Hcy)-induced neurotoxicity in cultured rat cerebellar granule neurones. Primary neuronal cultures were incubated for 30 min in the Mg(2+)-free ionic medium containing homocysteine and other ligands, and neurodegenerative changes were assessed 24h later using propidium iodide staining. D,L-Homocysteine given alone appeared to be a weak neurotoxin, with EC(50) of 17.4mM, whereas EC(50) for L-glutamate was 0.17 mM. Addition of 50 microM glycine enhanced homocysteine neurotoxicity, and only that portion of neurotoxicity was abolished by 0.5 microM MK-801, an uncompetitive NMDA receptor antagonist. The net stimulation of 45Ca uptake by granule cells incubated in the presence of 25 mM D,L-homocysteine with 50 microM glycine was only 3% of the net uptake evoked by 1mM glutamate. Application of an antagonist of group I metabotropic glutamate receptors (mGluRs) LY367385 at 25 and 250 microM concentrations, induced a dose-dependent partial neuroprotection, whereas given together with MK-801 completely prevented neurotoxicity. In the absence of glycine, LY367385 and MK-801 given alone failed to induce neuroprotection, while applied together completely prevented homocysteine neurotoxicity. Agonist of group I mGluRs, 10 trans-azetidine-2,3-dicarboxylic acid (t-ADA) induced significant neurotoxicity. This study shows for the first time that acute homocysteine-induced neurotoxicity is mediated both by group I mGluRs and NMDA receptors, and is not accompanied by massive influx of extracellular Ca(2+) to neurones.  相似文献   

16.
l-Glutamate is a major excitatory neurotransmitter that binds ionotropic and metabotropic glutamate receptors. Cerebral endothelial cells from many species have been shown to express several forms of glutamate receptors; however, human cerebral endothelial cells have not been shown to express either the N-methyl-D-aspartate (NMDA) receptor message or protein. This study provides evidence that human cerebral endothelial cells express the message and protein for NMDA receptors. Human cerebral endothelial cell monolayer electrical resistance changes in response to glutamate receptor agonists, antagonists, and second message blockers were tested. RT-PCR and Western blot analysis were used to demonstrate the presence of the NMDA receptor. Glutamate and NMDA (1 mM) caused a significant decrease in electrical resistance compared with sham control at 2 h postexposure; this response could be blocked significantly by MK-801 (an NMDA antagonist), 8-(N,N-diethylamino)-n-octyl-3,4,5-trimethyoxybenzoate (an intracellular Ca2+ antagonist), and N-acetyl-L-cystein (an antioxidant). Trans(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid, a metabotropic receptor agonist (1 mM), did not significantly decrease electrical resistance. Our results are consistent with a model where glutamate, at excitotoxic levels, may lead to a breakdown in the blood brain barrier via activation of NMDA receptors.  相似文献   

17.
The effects of Mg(2+) and nifedipine (Nif) on vasoconstriction and Ca(2+) transients were studied in intact, pressurized rat mesenteric arteries with myogenic tone. Changes in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) were measured with confocal microscopy in fluo 4-AM loaded, individual myocytes. Myogenic tone was abolished by 10 mM Mg(2+) or 0.3 microM Nif. Contractions induced by 75 mM K(+) depolarization were blocked by 0.3 microM Nif, but not by 10 mM Mg(2+). Phenylephrine (PE; 5 microM) evoked sustained [Ca(2+)](cyt) elevation and vasoconstriction with superimposed Ca(2+) oscillations and vasomotion. The subsequent addition of 10 mM Mg(2+) or 0.3 microM Nif reduced [Ca(2+)](cyt) and abolished plateau vasoconstriction. When added before PE, both Mg(2+) and Nif abolished the PE-evoked Ca(2+) oscillations and vasomotion. Mg(2+) dilated the PE-constricted arteries after a brief (< or =180-240 s) vasoconstriction, but Nif did not. Both agents also abolished the vasoconstriction attributed to Ca(2+) entry through store-operated channels (SOCs) during internal Ca(2+) store refilling that followed store depletion. The data suggest that Ca(2+) entry through SOCs helps maintain both myogenic tone and alpha(1)-adrenoceptor-induced tonic vasoconstriction.  相似文献   

18.
Effects of long term (72-h) exposure to low concentration (0.1 mum) of nicotine on various types of voltage-dependent Ca(2+) channels (VDCCs) and neuronal nicotinic acetylcholine receptors (nnAChRs) were examined using primary cultures of mouse cerebral cortical neurons. High potassium (30 mm KCl)-stimulated (45)Ca(2+) influx into the neurons increased with increasing the duration of nicotine exposure and its concentrations. The maximal increase of the KCl-stimulated (45)Ca(2+) influx was found 24 h after the initiation of exposure and thereafter maintained up to 72 h. This enhancement of KCl-induced (45)Ca(2+) influx after 72-h exposure to 0.1 mum nicotine was completely abolished by concomitant exposure with mecamylamine, an inhibitor for nnAChRs. Only the component of the KCl-induced (45)Ca(2+) influx observed after long term exposure to nicotine, which was sensitive to nifedipine, an inhibitor of L-type VDCCs, was facilitated, while the (45)Ca(2+) influx through P/Q- and N-type VDCCs showed no changes. Moreover, enhanced immunoreactivity against antibody for the alpha(1C) subunit of L-type VDCCs was recognized, whereas no changes in immunoreactivities against antibodies for alpha(1A) and alpha(1B) subunits of other types of VDCCs were noted. In addition, a Western blot analysis showed an increase of immunoreactivities against antibodies for alpha(1D) and alpha(2)/delta(1), and expression of mRNA for L-type VDCC subunit, alpha(1F), was also enhanced, although beta(4) mRNA expression was not changed. Whole cell patch clamp analysis revealed that the increase of the amplitude of Ba(2+) currents was also recognized in the neurons exposed to nicotine, and nicardipine reduced this increased amplitude to the level of the amplitude detected in nontreated neurons with nicardipine. The up-regulation of alpha(4) and beta(2) subunits, but not the alpha(3) subunit of nnAChRs, was also noted after the nicotine exposure when examining by the Western blot analysis. Taken together, these results indicate that the long term exposure of the neurons to a low concentration of nicotine induces both increased (45)Ca(2+) influx through up-regulated L-type VDCCs and nnAChR up-regulation.  相似文献   

19.
It is known that there is disruption of the blood-brain barrier during terminal AIDS encephalitis in both human immunodeficiency virus (HIV)-infected humans and simian immunodeficiency virus (SIV)-infected rhesus macaques. Much, although by no means all, of the neuropathological findings of HIV and SIV infection involves accumulation of monocytes/macrophages that have likely crossed the blood-brain barrier (BBB). There is no convincing, rigorous, demonstration of HIV (or SIV) infecting endothelial cells in vivo. However, this is not to say that HIV infection would not have any effects on the physiology of microvascular brain endothelial cells. Because of the elaborate nature of cerebral microvessels, previous studies of cerebral endothelial cells have been constrained by sectioning artifacts. Examination of freshly isolated cerebral microvessels allows investigation of extended lengths of vessels (>150 mum) without sectioning artifacts. These studies determine the changes in the expression of the tight junction protein zo-1 protein on the endothelial cells of cerebral capillaries at terminal acquired immune deficiency syndrome, demonstrating that there is a decreased expression of zo-1 protein over extended lengths of microvessels.  相似文献   

20.
Abstract: The effect of acute and chronic ethanol exposure on excitotoxicity in cultured rat cerebral cortical neurons was examined. Neuronal death was quantitated by measuring the accumulation of lactate dehydrogenase (LDH) in the culture media 20 h after exposure to NMDA. Addition of NMDA (25–100 μ M ) to the culture dishes for 25 min in Mg2+-free buffer resulted in a dose-dependent increase in LDH accumulation. Phase-contrast microscopy revealed obvious signs of cellular injury as evidenced by granulation and disintegration of cell bodies and neuritic processes. Chronic exposure of neuronal cultures to ethanol (100 m M ) for 96 h followed by its removal before NMDA exposure, significantly increased NMDA-stimulated LDH release by 36 and 22% in response to 25 μ M and 50 μ M NMDA, respectively. Neither basal LDH release nor that in response to maximal NMDA (100 μ M ) stimulation was altered by chronic alcohol exposure. In contrast to the effects of chronic ethanol on NMDA neurotoxicity, inclusion of ethanol (100 m M ) only during the NMDA exposure period significantly reduced LDH release by ∼ 50% in both control and chronically treated dishes. This reduction by acute ethanol was also observed under phase-contrast microscopy as a lack of development of granulation and a sparing of disintegration of neuritic processes. These results indicate that chronic exposure of ethanol to cerebral cortical neurons in culture can sensitize neurons to excitotoxic NMDA receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号