首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
Molecular biology has entrenched the gene as the basic hereditary unit and genomes are often considered little more than collections of genes. However, new concepts and genomic data have emerged, which suggest that the genome has a unique place in the hierarchy of life. Despite this, a framework for the genome as a major evolutionary transition has not been fully developed. Instead, genome origin and evolution are frequently considered as a series of neutral or nonadaptive events. In this article, we argue for a Darwinian multilevel selection interpretation for the origin of the genome. We base our arguments on the multilevel selection theory of hypercycles of cooperative interacting genes and predictions that gene‐level trade‐offs in viability and reproduction can help drive evolutionary transitions. We consider genomic data involving mobile genetic elements as a test case of our view. A new concept of the genome as a discrete evolutionary unit emerges and the gene–genome juncture is positioned as a major evolutionary transition in individuality. This framework offers a fresh perspective on the origin of macromolecular life and sets the scene for a new, emerging line of inquiry—the evolutionary ecology of the genome.  相似文献   

2.
3.
Despite many compelling applications in economics, sociobiology, and evolutionary psychology, group selection is still one of the most hotly contested ideas in evolutionary biology. Here we propose a simple evolutionary model of behavior and show that what appears to be group selection may, in fact, simply be the consequence of natural selection occurring in stochastic environments with reproductive risks that are correlated across individuals. Those individuals with highly correlated risks will appear to form “groups”, even if their actions are, in fact, totally autonomous, mindless, and, prior to selection, uniformly randomly distributed in the population. This framework implies that a separate theory of group selection is not strictly necessary to explain observed phenomena such as altruism and cooperation. At the same time, it shows that the notion of group selection does captures a unique aspect of evolution—selection with correlated reproductive risk–that may be sufficiently widespread to warrant a separate term for the phenomenon.  相似文献   

4.
George Williams defined an evolutionary unit as hereditary information for which the selection bias between competing units dominates the informational decay caused by imperfect transmission. In this article, I extend Williams' approach to show that the ratio of selection bias to transmission bias provides a unifying framework for diverse biological problems. Specific examples include Haldane and Lande's mutation-selection balance, Eigen's error threshold and quasispecies, Van Valen's clade selection, Price's multilevel formulation of group selection, Szathmáry and Demeter's evolutionary origin of primitive cells, Levin and Bull's short-sighted evolution of HIV virulence, Frank's timescale analysis of microbial metabolism and Maynard Smith and Szathmáry's major transitions in evolution. The insights from these diverse applications lead to a deeper understanding of kin selection, group selection, multilevel evolutionary analysis and the philosophical problems of evolutionary units and individuality.  相似文献   

5.
For principled and substantially philosophical reasons, based largely on his reform of natural history by inverting the Paleyan notion of overarching and purposeful beneficence in the construction of organisms, Darwin built his theory of selection at the single causal level of individual bodies engaged in unconscious (and metaphorical) struggle for their own reproductive success. But the central logic of the theory allows selection to work effectively on entities at several levels of a genealogical hierarchy, provided that they embody a set of requisite features for defining evolutionary individuality. Genes, cell lineages, demes, species, and clades-as well as Darwin''s favoured organisms-embody these requisite features in enough cases to form important levels of selection in the history of life. R. A. Fisher explicitly recognized the unassailable logic of species selection, but denied that thsi real process could be important in evolution because, compared with the production of new organisms within a species, the origin of new species is so rare, and the number of species within most clades so low. I review this and other classical arguments against higher-level selection, and conclude (in the first part of this paper) that they are invalid in practice for interdemic selection, and false in principle for species selection. Punctuated equilibrium defines the individuality of species and refutes Fisher''s classical argument based on cycle time. In the second part of the paper, I argue that we have failed to appreciate the range and power of selection at levels above and below the organismic because we falsely extrapolate the defining properties of organisms to these other levels (which are characterized by quite different distinctive features), and then regard the other levels as impotent because their effective individuals differ so much from organisms. We would better appreciate the power and generality of hierarchical models of selection if we grasped two key principles: first, that levels can interact in all modes (positively, negatively, and orthogonally), and not only in the negative style (with a higher level suppressing an opposing force of selection from the lower level) that, for heuristic and operational reasons, has received almost exclusive attention in the existing literature; and second, that each hierarchical level differs from all others in substantial and interesting ways, both in the style and frequency of patterns in change and causal modes.  相似文献   

6.
7.
Michod RE  Nedelcu AM  Roze D 《Bio Systems》2003,69(2-3):95-114
The continued well being of evolutionary individuals (units of selection and evolution) depends upon their evolvability, that is their capacity to generate and evolve adaptations at their level of organization, as well as their longer term capacity for diversifying into more complex evolutionary forms. During a transition from a lower- to higher-level individual, such as the transition between unicellular and multicellular organisms, the evolvability of the lower-level (cells) must be restricted, while the evolvability of the new higher-level unit (multicellular organism) must be enhanced. For these reasons, understanding the factors leading to an evolutionary transition should help us to understand the factors underlying the emergence of evolvability of a new evolutionary unit. Cooperation among lower-level units is fundamental to the origin of new functions in the higher-level unit. Cooperation can produce a new more complex evolutionary unit, with the requisite properties of heritable fitness variations, because cooperation trades fitness from a lower-level (the costs of cooperation) to the higher-level (the benefits for the group). For this reason, the evolution of cooperative interactions helps us to understand the origin of new and higher-levels of fitness and organization. As cooperation creates a new level of fitness, it also creates the opportunity for conflict between levels of selection, as deleterious mutants with differing effects at the two levels arise and spread. This conflict can interfere with the evolvability of the higher-level unit, since the lower and higher-levels of selection will often "disagree" on what adaptations are most beneficial to their respective interests. Mediation of this conflict is essential to the emergence of the new evolutionary unit and to its continued evolvability. As an example, we consider the transition from unicellular to multicellular organisms and study the evolution of an early-sequestered germ-line in terms of its role in mediating conflict between the two levels of selection, the cell and the cell group. We apply our theoretical framework to the evolution of germ/soma differentiation in the green algal group Volvocales. In the most complex member of the group, Volvox carteri, the potential conflicts among lower-level cells as to the "right" to reproduce the higher-level individual (i.e. the colony) have been mediated by restricting immortality and totipotency to the germ-line. However, this mediation, and the evolution of an early segregated germ-line, was achieved by suppressing mitotic and differentiation capabilities in all post-embryonic cells. By handicapping the soma in this way, individuality is ensured, but the solution has affected the long-term evolvability of this lineage. We think that although conflict mediation is pivotal to the emergence of individuality at the higher-level, the way in which the mediation is achieved can greatly affect the longer-term evolvability of the lineage.  相似文献   

8.
The basic problem in an evolutionary transition is to understandhow a group of individuals becomes a new kind of individual,possessing the property of heritable variation in fitness atthe new level of organization. During an evolutionary transition,for example, from single cells to multicellular organisms, thenew higher-level evolutionary unit (multicellular organism)gains its emergent properties by virtue of the interactionsamong lower-level units (cells). We see the formation of cooperativeinteractions among lower-level units as a necessary step inevolutionary transitions; only cooperation transfers fitnessfrom lower levels (costs to group members) to higher levels(benefits to the group). As cooperation creates new levels offitness, it creates the opportunity for conflict between levelsas deleterious mutants arise and spread within the group. Fundamentalto the emergence of a new higher-level unit is the mediationof conflict among lower-level units in favor of the higher-levelunit. The acquisition of heritable variation in fitness at thenew level, via conflict mediation, requires the reorganizationof the basic components of fitness (survival and reproduction)and life-properties (such as immortality and totipotency) aswell as the co-option of lower-level processes for new functionsat the higher level. The way in which the conflicts associatedwith the transition in individuality have been mediated, andfitness and general life-traits have been re-organized, caninfluence the potential for further evolution (i.e., evolvability)of the newly emerged evolutionary individual. We use the volvocaleangreen algal group as a model-system to understand evolutionarytransitions in individuality and to apply and test the theoreticalprinciples presented above. Lastly, we discuss how the differentnotions of individuality stem from the basic properties of fitnessin a multilevel selection context.  相似文献   

9.
Evolutionary game dynamics have been proposed as a mathematical framework for the cultural evolution of language and more specifically the evolution of vocabulary. This article discusses a model that is mutually exclusive in its underlying principals with some previously suggested models. The model describes how individuals in a population culturally acquire a vocabulary by actively participating in the acquisition process instead of passively observing and communicate through peer-to-peer interactions instead of vertical parent-offspring relations. Concretely, a notion of social/cultural learning called the naming game is first abstracted using learning theory. This abstraction defines the required cultural transmission mechanism for an evolutionary process. Second, the derived transmission system is expressed in terms of the well-known selection-mutation model defined in the context of evolutionary dynamics. In this way, the analogy between social learning and evolution at the level of meaning-word associations is made explicit. Although only horizontal and oblique transmission structures will be considered, extensions to vertical structures over different genetic generations can easily be incorporated. We provide a number of simplified experiments to clarify our reasoning.  相似文献   

10.
It is now widely accepted that microorganisms play many important roles in the lives of plants and animals. Every macroorganism has been shaped in some way by microorganisms. The recognition of the ubiquity and importance of microorganisms has led some to argue for a revolution in how we understand biological individuality and the primary units of natural selection. The term “holobiont” was introduced as a name for the biological unit made up by a host and all of its associated microorganisms, and much of this new debate about biological individuality has focused on whether holobionts are integrated individuals or communities. In this paper, I show how parts of the holobiont can span both characterizations. I argue that most holobionts share more affinities with communities than they do with organisms, and that, except for maybe in rare cases, holobionts do not meet the criteria for being organisms, evolutionary individuals, or units of selection.  相似文献   

11.
Competition and conflict among individuals can favour exploitative strategies that undermine the common good. Theory suggests that this can lead to a tragedy of the commons and ultimately population extinction, a phenomenon known as evolutionary suicide. Here, I present a model of the evolutionary tragedy of the commons that explicitly considers the population dynamics where individuals invest in individually costly competitive traits. In the simplest form, this supports the notion that selection for high levels of conflict can cause evolutionary suicide. However, as competition comes with survival and fecundity costs, a feedback between the investment in competition and population density can act to reduce the level of conflict and prevent the population from going extinct. This suggests that the interaction between population ecology and the evolution of competition and conflict among individuals may be an important mechanism in resolving the level of competition and conflict among individuals.  相似文献   

12.
The fitness of any evolutionary unit can be understood in terms of its two basic components: fecundity (reproduction) and viability (survival). Trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular organisms. We argue that these trade-offs gain special significance during the transition from unicellular to multicellular life. In particular, the evolution of germ–soma specialization and the emergence of individuality at the cell group (or organism) level are also consequences of trade-offs between the two basic fitness components, or so we argue using a multilevel selection approach. During the origin of multicellularity, we study how the group trade-offs between viability and fecundity are initially determined by the cell level trade-offs, but as the transition proceeds, the fitness trade-offs at the group level depart from those at the cell level. We predict that these trade-offs begin with concave curvature in single-celled organisms but become increasingly convex as group size increases in multicellular organisms. We argue that the increasingly convex curvature of the trade-off function is driven by the cost of reproduction which increases as group size increases. We consider aspects of the biology of the volvocine green algae – which contain both unicellular and multicellular members – to illustrate the principles and conclusions discussed.  相似文献   

13.
Many authors, including paleobiologists, cladists and so on, adopt a nested hierarchical viewpoint to examine the relationships among different levels of biological organization. Furthermore, species are often considered to be unique entities in functioning evolutionary processes and one of the individuals forming a nested hierarchy.I have attempted to show that such a hierarchical view is inadequate in evolutionary biology. We should define units depending on what we are trying to explain. Units that play an important role in evolution and ecology do not necessarily form a nested hierarchy. Also the relationships among genealogies at different levels are not simply nested. I have attempted to distinguish the different characteristics of passages when they are used for different purposes of explanation. In my analysis, species and monophyletic taxa cannot be uniquely defined as single units that function in ecological and evolutionary processes.The view discussed in this paper may provide a more general basis for testing competing theories in evolution, and provide new insights for future empirical studies.  相似文献   

14.
We present quantitative results for the doctoral thesis of the first-named author of this article. The objective was to recommend and test a teaching proposal for core knowledge of evolutionary biology in secondary education. The focus of the study is ‘Problem cores in teaching’. The ‘Weaving evolutionary thinking’ teaching unit, designed for and tested in this study, entailed: selecting basic evolutionary knowledge from the model of evolution through variation and natural selection; designing a coordinated set of activities, teaching resources and evaluation tools; leading a process of teacher training; and building bridges between: the teaching model, research into the teaching of evolutionary biology, our own teaching experience and that of the secondary school teacher who participated in the project. The data collected through questionnaires show significant differences in favour of the experimental group, which means that the proposal may be favourably assessed in the context of Mexican education, in terms of feasibility, relevance and the pedagogical transformation of knowledge.  相似文献   

15.
 This paper investigates the problem of how to conceive a robust theory of phenotypic adaptation in non-trivial models of evolutionary biology. A particular effort is made to develop a foundation of this theory in the context of n-locus population genetics. Therefore, the evolution of phenotypic traits is considered that are coded for by more than one gene. The potential for epistatic gene interactions is not a priori excluded. Furthermore, emphasis is laid on the intricacies of frequency-dependent selection. It is first discussed how strongly the scope for phenotypic adaptation is restricted by the complex nature of ‘reproduction mechanics’ in sexually reproducing diploid populations. This discussion shows that one can easily lose the traces of Darwinism in n-locus models of population genetics. In order to retrieve these traces, the outline of a new theory is given that I call ‘streetcar theory of evolution’. This theory is based on the same models that geneticists have used in order to demonstrate substantial problems with the ‘adaptationist programme’. However, these models are now analyzed differently by including thoughts about the evolutionary removal of genetic constraints. This requires consideration of a sufficiently wide range of potential mutant alleles and careful examination of what to consider as a stable state of the evolutionary process. A particular notion of stability is introduced in order to describe population states that are phenotypically stable against the effects of all mutant alleles that are to be expected in the long-run. Surprisingly, a long-term stable state can be characterized at the phenotypic level as a fitness maximum, a Nash equilibrium or an ESS. The paper presents these mathematical results and discusses – at unusual length for a mathematical journal – their fundamental role in our current understanding of evolution. Received 22 April 1994; received in revised form 10 July 1995  相似文献   

16.
It is well established that individuals age differently. Yet the nature of these inter-individual differences is still largely unknown. For humans, two main hypotheses have been recently formulated: individuals may experience differences in aging rate or aging timing. This issue is central because it directly influences predictions for human lifespan and provides strong insights into the biological determinants of aging. In this article, we propose a model which lets population heterogeneity emerge from an evolutionary algorithm. We find that whether individuals differ in (i) aging rate or (ii) timing leads to different emerging population heterogeneity. Yet, in both cases, the same mortality patterns are observed at the population level. These patterns qualitatively reproduce those of yeasts, flies, worms and humans. Such findings, supported by an extensive parameter exploration, suggest that mortality patterns across species and their potential shapes belong to a limited and robust set of possible curves. In addition, we use our model to shed light on the notion of subpopulations, link population heterogeneity with the experimental results of stress induction experiments and provide predictions about the expected mortality patterns. As biology is moving towards the study of the distribution of individual-based measures, the model and framework we propose here paves the way for evolutionary interpretations of empirical and experimental data linking the individual level to the population level.  相似文献   

17.
18.
An ‘evolutionary transition in individuality’ or ‘major transition’ is a transformation in the hierarchical level at which natural selection operates on a population. In this article I give an abstract (i.e. level-neutral and substrate-neutral) articulation of the transition process in order to precisely understand how such processes can happen, especially how they can get started.  相似文献   

19.
Conspecific nesting density affects many aspects of breeding biology, as well as habitat selection decisions. However, the large variations in breeding density observed in many species are yet to be fully explained. Here, we investigated the settlement patterns in a colonial species with variable breeding density and where resource distribution could be manipulated. The zebra finch, Taeniopygia guttata, is a classic avian model in evolutionary biology but we know surprisingly very little about nest site selection strategies and nesting densities in this species, and in fact, in nomadic species in general. Yet, important determinants of habitat selection strategies, including temporal predictability and breeding synchrony, are likely to be different in nomadic species than in the non‐nomadic species studied to date. Here, we manipulated the distribution of nesting sites (by providing nest boxes) and food patches (feeders) to test four non‐exclusive habitat selection hypotheses that could lead to nest aggregation: 1) attraction to resources, 2) attraction to breeding conspecifics, and 3) attraction to successful conspecifics and 4) use of private information (i.e. own reproductive success on a site). We found that wild zebra finches used conspecific presence and possibly reproductive success, to make decisions over where to locate their nests, but did not aggregate around water or food within the study areas. Moreover, there was a high degree of inter‐individual variation in nesting density preference. We discuss the significance of our results for habitat selection strategy in nomadic species and with respect to the differential selection pressures that individuals breeding at different densities may experience.  相似文献   

20.
What changes when an evolutionary transition in individuality takes place? Many different answers have been given, in respect of different cases of actual transition, but some have suggested a general answer: that a major transition is a change in the extent to which selection acts at one hierarchical level rather than another. The current paper evaluates some different ways to develop this general answer as a way to characterise the property ‘evolutionary individuality’; and offers a justification of the option taken in Clarke (J Philos 110(8):413–435, 2013)—to define evolutionary individuality in terms of an object’s capacity to undergo selection at its own level. In addition, I suggest a method by which the property can be measured and argue that a problem which is often considered to be fatal to that method—the problem of ‘cross-level by-products’—can be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号