首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various models purporting to explain natural hybrid zones make different assumptions about the fitness of hybrids. One class of models assumes that hybrids have intrinsically low fitness due to genetic incompatibilities, whereas other models allow hybrid fitness to vary across natural environments. We used the intrinsic rate of increase to assess lifetime fitness of hybrids between two species of montane plants Ipomopsis aggregata and Ipomopsis tenuituba planted as seed into multiple field environments. Because fitness is predicted to depend upon genetic composition of the hybrids, we included F1 hybrids, F2 hybrids, and backcrosses in our field tests. The F2 hybrids had female fitness as high, or higher, than expected under an additive model of fitness. These results run counter to any model of hybrid zone dynamics that relies solely on intrinsic nuclear genetic incompatibilities. Instead, we found that selection was environmentally dependent. In this hybrid zone, cytoplasmic effects and genotype-by-environment interactions appear more important in lowering hybrid fitness than do intrinsic genomic incompatibilities between nuclear genes.  相似文献   

2.
Natural hybrid zones between related species illustrate processes that contribute to genetic differentiation and species formation. A common viewpoint is that hybrids are essentially unfit, but they exist in a stable tension zone where selection against them is balanced by gene flow between the parent species. An alternative idea is that selection depends on the environment, for example, by favoring opposite traits in the two parental habitats or favoring hybrids within a bounded region. To determine whether selection of hybrids is environment dependent, we crossed plants of naturally hybridizing Ipomopsis aggregata and I. tenuituba in the Colorado Rocky Mountains and reciprocally planted the seed offspring into a suite of natural environments across the hybrid zone. All types of crosses produced similar numbers and weights of seeds. However, survival of the offspring after 5 years differed markedly among cross types. On average, the F1 hybrids had survival and growth rates as high as the average for their parents. But hybrid survival depended strongly on the direction of a cross, that is, on which species served as the maternal parent. This fitness difference between reciprocal hybrids appeared only in the parental environments, suggesting cytonuclear gene interactions that are environment specific. These results indicate that complex genotype-by-environment interactions can contribute to the evolutionary outcome of hybridization.  相似文献   

3.
“Ecological” speciation occurs when reproductive isolation evolves as a consequence of divergent selection between populations exploiting different resources or environments. We tested this hypothesis of speciation in a young stickleback species pair by measuring the direct contribution of ecological selection pressures to hybrid fitness. The two species (limnetic and benthic) are strongly differentiated morphologically and ecologically, whereas hybrids are intermediate. Fitness of hybrids is high in the laboratory, especially F1 and F2 hybrids (backcrosses may show some breakdown). We transplanted F1 hybrids to enclosures in the two main habitats in the wild to test whether the distribution of resources available in the environment generates a hybrid disadvantage not detectable in the laboratory. Hybrids grew more slowly than limnetics in the open water habitat and more slowly than benthics in the littoral zone. Growth of F1 hybrids was inferior to the average of the parent species across both habitats, albeit not significantly. The contrast between laboratory and field results supports the hypothesis that mechanisms of F1 hybrid fitness in the wild are primarily ecological and do not result from intrinsic genetic incompatibilities. Direct selection on hybrids contributes to the maintenance of sympatric stickleback species and may have played an important role in their origin.  相似文献   

4.
Negative epistasis in hybrid genomes commonly results in postzygotic isolation between divergent lineages. However, some genomic regions may be selectively neutral or adaptive in hybrids and thus may potentially cross species barriers. We examined postzygotic isolation between ecologically similar species of Louisiana Iris: Iris brevicaulis and I. fulva to determine the potential for adaptive introgression in nature. Line-cross analyses allowed us a general overview of the gene action responsible for fitness-related traits. We then used a QTL mapping approach to detect genomic regions responsible for variation in these traits. Although hybrid classes suffered reduced fitness for many traits, hybrid means were equivalent to at least one of the parental species in overall estimates of maternal and paternal fitness during the two years of the field study. The genetic architecture underlying the fitness-related traits varied across field site and year of the study, thus emphasizing the importance of the environment in determining the degree of postzygotic isolation and potential for introgression across natural hybrid zones.  相似文献   

5.
Natural hybridization is a crucial evolutionary process and a long-standing topic of study in evolutionary biology. Hybrid zones, where two congeneric species interact, can provide insight into the process of natural hybridization, especially with respect to how taxon diversity is maintained. In this study, we used double digest restriction-site associated DNA sequencing technology (ddRAD-seq) to examine genetic structure and estimate introgression in four hybrid zones of Ligularia tongolensis and Ligularia cymbulifera. Our analysis demonstrated that parental species were highly differentiated, whereas pairwise FST between parents and their hybrids was low, indicating that sympatric sites can form hybrid zones. As most F1 hybrid individuals were observed within these zones, our finding also implied the presence of substantial barriers to interbreeding. Furthermore, some individuals that possessed the typical morphology of the parental species belonged to the F1 generation. Genomic clines analysis revealed that a large fraction of single nucleotide polymorphisms (SNPs) deviated from a model of neutral introgression in the four hybrid zones, and most SNPs exhibited selection favoring the L. cymbulifera genotype. Bidirectional but asymmetric introgression was revealed as evident in the four hybrid zones. Habitat differences between the four hybrid zones may affect isolation barriers between both species. Taken together, these findings suggest that where incomplete reproductive barriers allow natural hybridization, the introgression between species generates rich genetic recombination that contributes to the fast adaptation and diversification of the widespread Ligularia in the Hengduan Mountains Region (HMR).  相似文献   

6.
The Bateson–Dobzhansky–Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high‐fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.  相似文献   

7.
Barriers to gene flow between species result from selection against foreign linkage blocks in hybrids. When the geographic ranges of taxa meet at multiple locations, the opportunity exists for variation in the genetic architecture of isolating barriers. Hybrid zones between two sunflower species (Helianthus annuus and H. petiolaris) in Nebraska and California exhibited remarkably similar patterns of introgression of mapped molecular markers. Congruence among hybrid zones may result from limited intraspecific variation at loci contributing to isolation and from similar selective effects of alleles in the heterospecific genetic background. The observed consistency of introgression patterns across distantly separated hybrid zones suggests that intrinsic forces predominate in determining hybrid zone dynamics and boundaries between these sunflower species.  相似文献   

8.
Two models developed to discern the mode of selection in hybrid zones differ in some predictions. The tension-zone model predicts that selection acts against hybrids and independently of the environment (endogenous selection) and that selection is invariant throughout the hybrid zone. The ecological selection-gradient, or ecotone, model maintains that fitness of different genotypes varies in response to environmental variation (exogenous selection) and thus, that in a region of the zone, fitness of hybrids is at least equal to that of the parental species. Therefore, to assess the predominant mode of selection operating in a hybrid zone, it is fundamental to evaluate whether selection is acting specifically against hybrid individuals, that is, whether hybridity alone is the basis for deficiencies of hybrids, and to evaluate whether the relative fitness of hybrids versus that of pure species varies across the zone. In a hardclam (genus Mercenaria) hybrid zone located in a polyhaline lagoon in east-central Florida, we used age-specific and location-specific analyses to determine that a hybrid deficit occurrs, that the deficit seems to be due to selection against hybrids, and that selection varies across the zone. Various measures of deviation from Hardy-Weinberg equilibrium, linkage disequilibrium analyses, and shifts in allele frequencies at semidiagnostic loci support the idea that selection is strongest in the northern region of the lagoon, the zone of sympatry and hybridization. Southward, into the range of M. mercenaria (the numerically predominant species), the percentage of hybrids remains relatively high and selection against hybrids decreases. For some genetic linkage groups, selection for M. mercenaria alleles seems to be occurring, but selection seems to be acting principally against alleles characteristic of M. mercenaria and, to a lesser degree, for alleles characteristic of M. campechiensis (the rarer species). These findings and others from previous analyses we have done on this hybrid zone demonstrate that selection in the zone is complex, and that characteristics of both the tension-zone and ecotone models are present. Supporting the tension-zone model, selection against hybrids per se clearly occurs, but specific genotypes seem to be at a selective disadvantage, whereas others have a selective advantage, and selection operates differentially on the two parental species within the zone. Supporting the ecotone model, the strength of overall selection varies throughout the zone, and environmentally mediated selection in which each species and hybrids have an advantage in specific habitats occurs, but some selection against hybrids is invariant throughout the zone. Thus, the structure and genetic architecture of this hybrid zone appear to be products of a complicated interaction between both types of selective forces cited in the two competing models.  相似文献   

9.
Spatially variable selection pressure within heterogeneous environments can result in the evolution of specialist phenotypes that facilitate co-occurrence of closely related species and limit genetic exchange. If divergent selection pressures maintain reproductive isolation, hybridization is expected to correlate with the strength of underlying ecological gradients and the traits shaped by adaptive processes. We sampled ten replicate topminnow (Fundulus olivaceus and Fundulus notatus) hybrid zones in isolated drainages throughout central and southern North America. In all drainages, species were distributed in an upstream–downstream manner with contact zones localized at confluences featuring abrupt shifts from tributary to river habitat. In two drainages, the typical up and downstream positions of species were reversed. Phenotype differences between the species reflect predicted selection differences along stream gradients. Downstream populations (lower food availability and greater predator pressure) generally showed larger investment in reproduction (higher gonadal somatic index), smaller body size and lower somatic condition compared to upstream populations. Phenotypic differences between the species in the two reversed drainages were consistent with convergence of life history traits in the respective habitats. Phenotypes of individuals of hybrid origin (F1 hybrids or backcrosses) were not significantly different from the average of the two parental forms, though there were trends towards reduced fitness. The prevalence of hybridization among drainages ranged from no hybrids in two drainages to near random mating. The strongest correlates of hybridization rate among replicate hybrid zones were similarity in body shape and the homogeneity of habitat through tributary-river confluences. The two reversed orientation hybrid zones also exhibited high prevalence of hybrids suggesting that phenotypic convergence could lead to increased hybridization.  相似文献   

10.
While sexual selection is generally assumed to quickly cause or strengthen prezygotic barriers between sister species, its role in causing postzygotic isolation, through the unattractiveness of intermediate hybrids, is less often examined. Combining 24 years of pedigree data and recently developed species-specific molecular markers from collared (Ficedula albicollis) and pied (Ficedula hypoleuca) flycatchers and their hybrids, we were able to quantify all key components of fitness. To disentangle the relative role of natural and sexual selection acting on F1 hybrid flycatchers, we estimated various fitness components, which when combined represent the total lifetime reproductive success of F1 hybrids, and then compared the different fitness components of F1 hybrids to that of collared flycatchers. Female hybrid flycatchers are sterile, with natural selection being the selective force involved, but male hybrids mainly experienced a reduction in fitness through sexual selection (decreased pairing success and increased rate of being cuckolded). To disentangle the role of sexual selection against male hybrids from a possible effect of genetic incompatibility (on the rate of being cuckolded), we compared male hybrids with pure-bred males expressing intermediate plumage characters. Given that sexual selection against male hybrids is a result of their intermediate plumage, we expect these two groups of males to have a similar fitness reduction. Alternatively, hybrids have reduced fitness owing to genetic incompatibility, in which case their fitness should be lower than that of the intermediate pure-bred males. We conclude that sexual selection against male hybrids accounts for approximately 75% of the reduction in their fitness. We discuss how natural and sexual selection against hybrids may have different implications for speciation and conclude that reinforcement of reproductive barriers may be more likely when there is sexual selection against hybrids.  相似文献   

11.
Adaptation to contrasting environments across a heterogeneous landscape favors the formation of ecotypes by promoting ecological divergence. Patterns of fitness variation in the field can show whether natural selection drives local adaptation and ecotype formation. However, to demonstrate a link between ecological divergence and speciation, local adaptation must have consequences for reproductive isolation. Using contrasting ecotypes of an Australian wildflower, Senecio lautus in common garden experiments, hybridization experiments, and reciprocal transplants, we assessed how the environment shapes patterns of adaptation and the consequences of adaptive divergence for reproductive isolation. Local adaptation was strong between ecotypes, but weaker between populations of the same ecotype. F1 hybrids exhibited heterosis, but crosses involving one native parent performed better than those with two foreign parents. In a common garden experiment, F2 hybrids exhibited reduced fitness compared to parentals and F1 hybrids, suggesting that few genetic incompatibilities have accumulated between populations adapted to contrasting environments. Our results show how ecological differences across the landscape have created complex patterns of local adaptation and reproductive isolation, suggesting that divergent natural selection has played a fundamental role in the early stages of species diversification.  相似文献   

12.
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.  相似文献   

13.
Three species of closely related woodpeckers (sapsuckers; Sphyrapicus) hybridize where they come into contact, presenting a rare ‘λ‐shape’ meeting of hybrid zones. Two of the three arms of this hybrid zone are located on either side of the Interior Plateau of British Columbia, Canada bordering the foothills of the Coast Mountains and the Rocky Mountains. The third arm is located in the eastern foothills of the Rocky Mountains. The zones of hybridization present high variability of phenotypes and alleles in relatively small areas and provide an opportunity to examine levels of reproductive isolation between the taxa involved. We examined phenotypes (morphometric traits and plumage) and genotypes of 175 live birds across the two hybrid zones. We used the Genotyping By Sequencing (GBS) method to identify 180 partially diagnostic single nucleotide polymorphisms (SNPs) to generate a genetic hybrid index (GHI) for each bird. Phenotypically diverged S. ruber and S. nuchalis are genetically closely related, while S. nuchalis and S. varius have similar plumage but are well separated at the genetic markers studied. The width of both hybrid zones is narrower than expected under neutrality, and analyses of both genotypes and phenotypes indicate that hybrids are rare in the hybrid zone. Rarity of hybrids indicates assortative mating and/or some form of fitness reduction in hybrids, which might maintain the species complex despite close genetic distance and introgression. These findings further support the treatment of the three taxa as distinct species.  相似文献   

14.
Closely related species coexisting in sympatry provide critical insight into the mechanisms underlying speciation and the maintenance of genetic divergence. Selfing may promote reproductive isolation by facilitating local adaptation, causing reduced hybrid fitness in parental environments. Here, we propose a novel mechanism by which selfing can further impair interspecific gene flow: selfing may act to ensure that nonhybrid progeny systematically co-occur whenever hybrid genotypes are produced. Under a competition arena, the fitness differentials between nonhybrid and hybrid progeny are then magnified, preventing development of interspecific hybrids. We investigate whether this "sibling competition arena" can explain the coexistence in sympatry of closely related species of the plant fungal pathogens (Microbotryum) causing anther-smut disease. The probabilities of intrapromycelial mating (automixis), outcrossing, and sibling competition were manipulated in artificial inoculations to evaluate their contribution to reproductive isolation. We report that both intrapromycelial selfing and sibling competition significantly reduced rates of hybrid infection beyond that expected based solely upon selfing rates and noncompetitive fitness differentials between hybrid and nonhybrid progeny. Our results thus suggest that selfing and a sibling competition arena can combine to constitute a barrier to gene flow and diminish selection for additional barriers to gene flow in sympatry.  相似文献   

15.
Experimental work has provided evidence for extrinsic post-zygotic isolation, a phenomenon unique to ecological speciation. The role that ecological components to reduced hybrid fitness play in promoting speciation and maintaining species integrity in the wild, however, is not as well understood. We addressed this problem by testing for selection against naturally occurring hybrids in two sympatric species pairs of benthic and limnetic threespine sticklebacks (Gasterosteus aculeatus). If post-zygotic isolation is a significant reproductive barrier, the relative frequency of hybrids within a population should decline significantly across the life-cycle. Such a trend in a natural population would give independent support to experimental evidence for extrinsic, rather than intrinsic, post-zygotic isolation in this system. Indeed, tracing mean individual hybridity (genetic intermediateness) across three life-history stages spanning four generations revealed just such a decline. This provides compelling evidence that extrinsic selection plays an important role in maintaining species divergence and supports a role for ecological speciation in sticklebacks.  相似文献   

16.
The maintenance of species barriers in the face of gene flow is often thought to result from strong selection against intermediate genotypes, thereby preserving genetic differentiation. Most speciation genomic studies thus aim to identify exceptionally divergent loci between populations, but divergence will be affected by many processes other than reproductive isolation (RI) and speciation. Through genomic studies of recombinant hybrids sampled in the wild, genetic variation associated with RI can be observed in situ, because selection against incompatible genotypes will leave detectable patterns of variation in the hybrid genomes. To better understand the mechanisms directly involved in RI, we investigated three natural ‘replicate’ hybrid zones between two divergent Populus species via locus‐specific patterns of ancestry across recombinant hybrid genomes. As expected, genomic patterns in hybrids and their parental species were consistent with the presence of underdominant selection at several genomic regions. Surprisingly, many loci displayed greatly increased between‐species heterozygosity in recombinant hybrids despite striking genetic differentiation between the parental genomes, the opposite of what would be expected with selection against intermediate genotypes. Only a limited, reproducible set of genotypic combinations was present in hybrid genomes across localities. In the absence of clearly delimited ‘hybrid habitats’, our results suggest that complex epistatic interactions within genomes play an important role in advanced stages of RI between these ecologically divergent forest trees. This calls for more genomic studies that test for unusual patterns of genomic ancestry in hybridizing species.  相似文献   

17.
A genetic interpretation of ecologically dependent isolation   总被引:6,自引:0,他引:6  
Hybrids may suffer a reduced fitness both because they fall between ecological niches (ecologically dependent isolation) and as a result of intrinsic genetic incompatibilities between the parental genomes (ecologically independent isolation). Whereas genetic incompatibilities are common to all theories of speciation, ecologically dependent isolation is a unique prediction of the ecological model of speciation. This prediction can be tested using reciprocal transplants in which the fitness of various genotypes is evaluated in both parental habitats. Here we expand a quantitative genetic model of Lynch (1991) to include two parental environments. We ask whether a sufficient experimental design exists for detecting ecologically dependent isolation. Analysis of the model reveals that by using both backcrosses in both parental environments, environment-specific additive genetic effects can be estimated while correcting for any intrinsic genetic isolation. Environment-specific dominance effects can also be estimated by including the F1 and F2 in the reciprocal transplant. In contrast, a reciprocal transplant comparing only F1s or F2s to the parental species cannot separate ecologically dependent from intrinsic genetic isolation. Thus, a reduced fitness of F1 or F2 hybrids relative to the parental species is not sufficient to demonstrate ecological speciation. The model highlights the importance of determining the contribution of genetic and ecological mechanisms to hybrid fitness if inferences concerning speciation mechanisms are to be made.  相似文献   

18.
Maladaptive hybridization, as determined by the pattern and intensity of selection against hybrid individuals, is an important factor contributing to the evolution of prezygotic reproductive isolation. To identify the consequences of hybridization between Drosophila pseudoobscura and D. persimilis, we estimated multiple fitness components for F1 hybrids and backcross progeny and used these to compare the relative fitness of parental species and their hybrids across two generations. We document many sources of intrinsic (developmental) and extrinsic (ecological) selection that dramatically increase the fitness costs of hybridization beyond the well-documented F1 male sterility in this model system. Our results indicate that the cost of hybridization accrues over multiple generations and reinforcement in this system is driven by selection against hybridization above and beyond the cost of hybrid male sterility; we estimate a fitness loss of >95% relative to the parental species across two generations of hybridization. Our findings demonstrate the importance of estimating hybridization costs using multiple fitness measures from multiple generations in an ecologically relevant context; so doing can reveal intense postzygotic selection against hybridization and thus, an enhanced role for reinforcement in the evolution of populations and diversification of species.  相似文献   

19.
Models of hybrid zones differ in their assumptions about the relative fitnesses of hybrids and the parental species. These fitness relationships determine the form of selection across the hybrid zone and, along with gene flow, the evolutionary dynamics and eventual outcome of natural hybridization. We measured a component of fitness, export and receipt of pollen in single pollinator visits, for hybrids between the herbaceous plants Ipomopsis aggregata and I. tenuituba and for both parental species. In aviary experiments with captive hummingbirds, hybrid flowers outperformed flowers of both parental species by receiving more pollen on the stigma. Although hummingbirds were more effective at removing pollen from anthers of I. aggregata, hybrid flowers matched both parental species in the amount of pollen exported to stigmas of other flowers. These patterns of pollen transfer led to phenotypic stabilizing selection, during that stage of the life cycle, for a stigma position intermediate between that of the two species and to directional selection for exserted anthers. Pollen transfer between the species was high, with flowers of I. aggregata exporting pollen equally successfully to conspecific and I. tenuituba flowers. Although this study showed that natural hybrids enjoy the highest quality of pollinator visits, a previous study found that I. aggregata receives the highest quantity of pollinator visits. Thus, the relative fitness of hybrids changes over the life cycle. By combining the results of both studies, pollinator-mediated selection in this hybrid zone is predicted to be strong and directional, with hybrid fitness intermediate between that of the parental species.  相似文献   

20.
The fitness of hybrids might be compromised as a result of intrinsic isolation and/or because they fall between ecological niches due to their intermediate phenotypes (“extrinsic isolation”). Here, we present data from several crosses (parental crosses, F1, F2, and backcrosses) between the two host races of Lochmaea capreae on willow and birch to test for extrinsic isolation, intrinsic isolation, and environmentally dependent genetic incompatibilities. We employed a reciprocal transplant design in which offspring were raised on either host plant and their survival was recorded until adulthood. We also applied joint‐scaling analysis to determine the genetic architecture of hybrid inviability. The relative fitness of the backcrosses switched between environments; furthermore, the additive genetic–environment interaction was detected as the strongest effect in our analysis. These results provide strong evidence that divergent natural selection has played a central role in the evolution of hybrid dysfunction between host races. Joint‐scaling analysis detected significant negative epistatic effects that are most evident in the poor performance of F2‐hybrids on willow, indicating signs of intrinsic isolation. We did not find any evidence that genetic incompatibilities are manifested independently of environmental conditions. Our findings suggest the outcome of natural hybridization between these host races is mainly affected by extrinsic isolation and a weak contribution of intrinsic isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号