共查询到20条相似文献,搜索用时 0 毫秒
1.
Little is known about the process whereby the emetic toxin (or cereulide) of Bacillus cereus is produced. Two cereulide-producing strains of B. cereus were cloned and sequenced following polymerase chain reaction (PCR) amplification with primers that were specific for conserved regions of non-ribosomal peptide synthetase (NRPS) genes. The cloned regions of the B. cereus strains were highly homologous to conserved regions of other peptide synthetase nucleotide sequences. Primers were designed for two variable regions of the NRPS gene sequence to ensure specificity for the emetic strains. A total of 86 B. cereus strains of known emetic or non-emetic activity were screened using these primers. All of the emetic strains (n=30) displayed a 188 bp band following amplification and gel electrophoresis. We have developed an improved method of identifying emetic strains of B. cereus and provided evidence that cereulide is produced by peptide synthetases. 相似文献
2.
Rajkovic A Uyttendaele M Vermeulen A Andjelkovic M Fitz-James I in 't Veld P Denon Q Vérhe R Debevere J 《Letters in applied microbiology》2008,46(5):536-541
Aims: The study describes the effects of heating temperature and exposure time on the thermal stability of cereulide under different conditions (pH, presence/absence of oil phase and cereulide concentration). Methods and Results: Cereulide heat inactivation was investigated at 100, 121 and 150°C under different alkaline pH values (8.6–10.6) and in the presence of oil phase (0.6–1.4%). Three different cereulide concentrations (0.5, 5 and 6 μg ml?1) were used. Cereulide detection was performed with computer‐aided semen analyzer and with HPLC–MS. Highly alkaline pH was needed to achieve inactivation. At lower cereulide concentrations less drastic conditions were needed. Removal of alkaline buffer after the heat treatment resulted in the recovery of toxic activity. Conclusions: Heat stability of cereulide has been proved to be remarkable, even at highly alkaline pH values, at all temperatures tested. The loss of activity appeared to be reversible. Significance and Impact of the Study: The study demonstrates the inability of any heat treatment used in the food industry to inactivate cereulide. Food safety has to rely on prevention and cold chain maintenance. Cleaning practices also need to be adapted as cereulide may remain in its active form upon sterilization of used material. 相似文献
3.
Ladeuze S Lentz N Delbrassinne L Hu X Mahillon J 《Applied and environmental microbiology》2011,77(7):2555-2558
In this study, the fungistatic activity of Bacillus cereus cereulide-producing strains was demonstrated against nine fungal species. The role of cereulide was confirmed using plasmid-cured derivatives and ces knockout mutants. The fungistatic spectra of cereulide and valinomycin, a chemically related cyclododecadepsipeptide, were also compared and found to be similar but distinct. 相似文献
4.
5.
Toh M Moffitt MC Henrichsen L Raftery M Barrow K Cox JM Marquis CP Neilan BA 《Journal of applied microbiology》2004,97(5):992-1000
AIMS: To determine if cereulide, the emetic toxin produced by Bacillus cereus, is produced by a nonribosomal peptide synthetase (NRPS). METHODS AND RESULTS: NC Y, an emetic strain of Bacillus cereus, was examined for a NRPS gene using PCR with primers recognizing a fragment of a NRPS gene from the cyanobacterium Microcystis. The amplicon was sequenced and compared with other gene sequences using BLAST analysis, which showed that the amplicon from strain NC Y was similar in sequence to peptide synthetase genes in other micro-organisms, including Bacillus subtilis and B. brevis, while no such sequence was found in the complete genome sequence of a nonemetic strain of B. cereus. Specific PCR primers were then designed and used to screen 40 B. cereus isolates previously implicated in outbreaks of foodborne illness. The isolates were also screened for toxin production using the MTT cell cytotoxicity assay. PCR and MTT assay screening of the B. cereus isolates revealed a high correlation between the presence of the NRPS gene and cereulide production. CONCLUSIONS: The results indicate that cereulide is produced by a NRPS complex. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to provide evidence identifying the mechanism of production of cereulide, the emetic toxin of B. cereus. The PCR primers developed in the study allow determination of the potential for cereulide production among isolates of B. cereus. 相似文献
6.
Abstract A vacuole-formation substance, cereulide of Bacillus cereus , is an emetic toxin in animals. Both oral administration and intraperitoneal injection of cereulide caused dose-dependent emesis in Suncus murinus , a new animal model of emesis. Vagotomy or a 5-HT3 receptor antagonist completely abolished this emetic effect. Therefore, cereulide causes emesis through the 5-HT3 receptor and stimulation of the vagus afferent. We also found that our purified cereulide caused swelling of mitochondria of HEp-2 cells. 相似文献
7.
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed. 相似文献
8.
Kuse M Franz T Koga K Suwan S Isobe M Agata N Ohta M 《Bioorganic & medicinal chemistry letters》2000,10(8):735-739
Cereulide is a principal toxin causing emetic syndrome produced by Bacillus cereus. This paper deals with biosynthetic studies on this unusual cyclic depsipeptide toxin from 13C labeled L-amino acid precursors (Val, Leu, Ala) upon cultivation in synthetic media. The analyses were made at atomic level of the constituent amino- or oxy-acids through NMR and ESI-MS/MS spectroscopic methods on cereulide and its hydrolysate dipeptides. The incorporation of the 13C atom was 95% in each O-Val, O-Leu and L-Val, while 40% in D-Ala of cereulide. 相似文献
9.
Häggblom MM Apetroaie C Andersson MA Salkinoja-Salonen MS 《Applied and environmental microbiology》2002,68(5):2479-2483
This paper describes a quantitative and sensitive chemical assay for cereulide, the heat-stable emetic toxin produced by Bacillus cereus. The methods previously available for measuring cereulide are bioassays that give a toxicity titer, but not an accurate concentration. The dose of cereulide causing illness in humans is therefore not known, and thus safety limits for cereulide cannot be indicated. We developed a quantitative and sensitive chemical assay for cereulide based on high-performance liquid chromatography (HPLC) connected to ion trap mass spectrometry. This chemical assay and a bioassay based on boar sperm motility inhibition were calibrated with purified cereulide and with valinomycin, a structurally similar cyclic depsipeptide. The boar spermatozoan motility assay and chemical assay gave uniform results over a wide range of cereulide concentrations, ranging from 0.02 to 230 microg ml(-1). The detection limit for cereulide and valinomycin by HPLC-mass spectrometry was 10 pg per injection. The combined chemical and biological assays were used to define conditions and concentrations of cereulide formation by B. cereus strains F4810/72, NC7401, and F5881. Cereulide production commenced at the end of logarithmic growth, but was independent of sporulation. Production of cereulide was enhanced by incubation with shaking compared to static conditions. The three emetic B. cereus strains accumulated 80 to 166 microg of cereulide g(-1) (wet weight) when grown on solid medium. Strain NC7401 accumulated up to 25 microg of cereulide ml(-1) in liquid medium at room temperature (21 +/- 1 degrees C) in 1 to 3 days, during the stationary growth phase when cell density was 2 x 10(8) to 6 x 10(8) CFU ml(-1). Cereulide production at temperatures at and below 8 degrees C or at 40 degrees C was minimal. 相似文献
10.
Ehling-Schulz M Guinebretiere MH Monthán A Berge O Fricker M Svensson B 《FEMS microbiology letters》2006,260(2):232-240
Very different toxins are responsible for the two types of gastrointestinal diseases caused by Bacillus cereus: the diarrhoeal syndrome is linked to nonhemolytic enterotoxin NHE, hemolytic enterotoxin HBL, and cytotoxin K, whereas emesis is caused by the action of the depsipeptide toxin cereulide. The recently identified cereulide synthetase genes permitted development of a molecular assay that targets all toxins known to be involved in food poisoning in a single reaction, using only four different sets of primers. The enterotoxin genes of 49 strains, belonging to different phylogenetic branches of the B. cereus group, were partially sequenced to encompass the molecular diversity of these genes. The sequence alignments illustrated the high molecular polymorphism of B. cereus enterotoxin genes, which is necessary to consider when establishing PCR systems. Primers directed towards the enterotoxin complex genes were located in different CDSs of the corresponding operons to target two toxin genes with one single set of primers. The specificity of the assay was assessed using a panel of B. cereus strains with known toxin profiles and was successfully applied to characterize strains from food and clinical diagnostic labs as well as for the toxin gene profiling of B. cereus isolated from silo tank populations. 相似文献
11.
Ghelardi E Celandroni F Salvetti S Barsotti C Baggiani A Senesi S 《FEMS microbiology letters》2002,208(1):129-134
The epidemiology of Bacillus cereus strains responsible for food poisoning is scantly known, mostly because the genotypic and toxigenic properties of the B. cereus strains isolated during food-poisoning outbreaks have been never catalogued. The occurrence of two simultaneous food-poisoning outbreaks gave us the opportunity to wonder whether (i) the identity of individual strains isolated from clinical, environmental, and food samples could be established by random amplified polymorphic DNA (RAPD)-PCR and multiplex RAPD-PCR, and (ii) the toxigenic potential of the isolates could be determined by testing their ability to secrete hemolysin BL, phosphatidylcholine-specific phospholipase C, and cereulide, as well as by determining the presence of the genes encoding enterotoxins NHE, T, and FM/S, cytotoxin K, sphingomyelinase, and phosphatidylinositol-specific phospholipase C. This is the first report demonstrating that the combination of several phenotypic and genotypic traits provides a powerful tool for tracing the source of infection of toxigenic B. cereus strains relevant for epidemiological survey. 相似文献
12.
Keiko Yokoyama Masafumi Ito Norio Agata Minoru Isobe Keigo Shibayama Toshinobu Horii Michio Ohta 《FEMS immunology and medical microbiology》1999,24(1):115-120
Cereulide is the causative toxin of the emetic type of food-borne illness caused by Bacillus cereus. This toxin was previously shown to be associated with fulminant liver failure in a human case. Mice were injected i.p. with synthetic cereulide and the development of histopathological changes was examined. Hepatocytes showed mitochondrial swelling with loss of cristae, and dose-dependent increase of small fatty droplets. These microsteatotic hepatocytes were distributed mainly in the pericentral area. At higher cereulide doses, massive degeneration of hepatocytes occurred. The serum values of hepatic enzymes were highest on days 2-3 after the inoculation of cereulide, and rapidly decreased thereafter. General recovery from the pathological changes and regeneration of hepatocytes was observed after 4 weeks. 相似文献
13.
Kawamura-Sato K Hirama Y Agata N Ito H Torii K Takeno A Hasegawa T Shimomura Y Ohta M 《Microbiology and immunology》2005,49(1):25-30
An emetic toxin cereulide, produced by Bacillus cereus, causes emetic food poisonings, but a method for quantitative measurement of cereulide has not been well established. A current detection method is a bioassay method using the HEp-2 cell vacuolation test, but it was unable to measure an accurate concentration. We established a quantitative assay for cereulide based on its mitochondrial respiratory uncoupling activity. The oxygen consumption in a reaction medium containing rat liver mitochondria was rapid in the presence of cereulide. Thus uncoupling effect of cereulide on mitochondrial respiration was similar to those of uncouplers 2,4-dinitrophenol (DNP), carbonylcyanide m-chlorophenylhydrazone (CCCP), and valinomycin. This method gave constant results over a wide range of cereulide concentrations, ranging from 0.05 to 100 microg/ml. The minimum cereulide concentration to detect uncoupled oxygen consumption was 50 ng/ml and increased dose-dependently to the maximum level. Semi-log relationship between the oxygen consumption rate and the cereulide concentration enables this method to quantify cereulide. The results of this method were highly reproducible as compared with the HEp-2 cell vacuolation test and were in good agreement with those of the HEp-2 cell vacuolation test. The enterotoxin of B. cereus or Staphylococcus aureus did not show any effect on the oxygen consumption, indicating this method is specific for the identification of cereulide as a causative agent of emetic food poisonings. 相似文献
14.
从大连渤海海域筛选出1株放线菌L1,结合形态观察、生理生化实验和16S rDNA分子鉴定,确定L1属于链霉菌属球孢链霉菌(Streptomyces globisporus)。根据GenBank发布的非核糖体肽合成酶(NRPS)序列设计引物,从放线菌L1的基因组DNA中扩增获得NRPS基因片段。测序结果及比对分析表明该片段属于NRPS缩合结构域部分序列。三维建模显示其结构呈V型,包含缩合结构域核心序列,与数据库已知结构相一致,可以推断该克隆片段为NRPS缩合结构域基因片段,为后续深入研究缩合结构域特异性与相关NRPS功能提供基础。 相似文献
15.
Macrolactonization catalyzed by the terminal thioesterase domain of the nonribosomal peptide synthetase responsible for lichenysin biosynthesis 总被引:1,自引:0,他引:1
The excised terminal thioesterase of the lichenysin nonribosomal peptide synthetase was found to be a highly efficient and versatile enzyme. Its activity strictly requires the R configuration of the beta-hydroxy fatty acid and the side chains of aspartate-5 and isoleucine-7, but tolerates changes in five other residues of the substrate. Characterization of this enzyme facilitates future effort to engineer the lichenysin synthetase for biotechnological applications. 相似文献
16.
赭曲霉毒素A(ochratoxin A,OTA)是国际癌症研究机构认定的"2B"类致癌物。黑曲霉Aspergillus niger是美国食品药品监督局认可的食品安全菌。然而近年来陆续发现某些黑曲霉菌株能够产生OTA,这会对人类健康构成潜在威胁。阐明黑曲霉生物合成OTA的关键基因有助于理解OTA生物合成机制,这对OTA污染的防控具有重要意义。本研究克隆了产OTA黑曲霉中非核糖体肽合成酶(NRPS)编码基因(An15g07910),并对其进行了生物信息学分析,在此基础上采用同源重组的方法敲除了该基因,获得了一株性能稳定的敲除突变株Δnrps。与野生株相比,Δnrps突变株的表型在CYA培养基中并无明显改变,但在7d培养期间完全失去了合成赭曲霉毒素α(ochratoxinα,OTα)和OTA的能力,而赭曲霉毒素β(ochratoxinβ,OTβ)的合成不受影响。在野生株培养过程中,该nrps基因前4d表达量逐渐增大,并在第4天达到最高,随后基因表达量逐渐下降并趋于稳定,这与OTA的含量变化基本一致。结果表明该nrps基因(An15g07910)参与OTA的生物合成,其编码的NRPS可能负责催化苯丙氨酸部分和二氢异香豆素部分的交联。 相似文献
17.
Emesis was noted following intravenous bolus injections into dogs of a chromatographic subfraction derived from porcine small intestinal tissue extracts. The active agent was isolated from this subfraction using sequential ion-exchange and reverse-phase HPLC and demonstrated to be the recently identified regulatory peptide PYY. The threshold dose for PYY-induced emesis in the dog is less than 120 pmol/kg. Emesis was sometimes seen following large IV bolus doses of neuropeptide Y (NPY), but none was seen following IV injection of pancreatic polypeptide (PP). Dogs prepared with discrete, bilateral lesions of the area postrema were refractory to a suprathreshold emetic dose of PYY. PYY is the most potent, circulating emetic peptide identified to date. 相似文献
18.
Serrawettin W1 produced by Serratia marcescens is a surface active exolipid having various functions supporting behaviors of bacteria on surface environments. Through the genetic analyses of serrawettin-less mutants of S. marcescens 274, the swrW gene encoding putative serrawettin W1 synthetase was identified. Homology analysis of the putative SwrW demonstrated the presence of condensation, adenylation, thiolation, and thioesterase domains which are characteristic for nonribosomal peptide synthetase (NRPS). NRPSs have been known as multi-modular enzymes. Linear alignment of these modules specifying respective amino acids will enable peptide bond formation resulting in a specific amino acid sequence. Putative SwrW was uni-modular NRPS specifying only L-serine. Possible steps in this simple unimodular NRPS for biosynthesis of serrawettin W1 [ cyclo-(D-3-hydroxydecanoyl-L-seryl) (2) ] were predicted by referring to the ingenious enzymatic activity of gramicidin S synthetase (multi-modular NRPS) of Brevibacillus brevis. 相似文献
19.
Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production 下载免费PDF全文
Cramer RA Gamcsik MP Brooking RM Najvar LK Kirkpatrick WR Patterson TF Balibar CJ Graybill JR Perfect JR Abraham SN Steinbach WJ 《Eukaryotic cell》2006,5(6):972-980
The fungal secondary metabolite gliotoxin produced by Aspergillus fumigatus has been hypothesized to be important in the development of invasive aspergillosis. In this study, we addressed this hypothesis by disrupting a nonribosomal peptide synthetase (NRPS) (encoded by gliP) predicted to be involved in gliotoxin production. Mutants with a disrupted gliP locus failed to produce gliotoxin, which confirmed the role of the NRPS encoded by gliP in gliotoxin biosynthesis. We found no morphological, developmental, or physiological defects in DeltagliP mutant strains. In addition, disruption of gliP resulted in down regulation of gene expression in the gliotoxin biosynthesis gene cluster, which was restored with addition of exogenous gliotoxin. This interesting result suggests a role for gliotoxin in regulating its own production. Culture filtrates from the DeltagliP mutant were unable to inhibit ionomycin-dependent degranulation of mast cells, suggesting a role for gliotoxin in suppressing mast cell degranulation and possibly in disease development. However, the DeltagliP mutant did not have an impact on survival or tissue burden in a murine inhalational model of invasive aspergillosis. This result suggests that gliotoxin is not required for virulence in an immunosuppressed host with an invasive pulmonary infection. 相似文献
20.
Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay 总被引:2,自引:0,他引:2
Bacillus cereus causes two types of gastrointestinal diseases: emesis and diarrhea. The emetic type of the disease is attributed to the heat-stable depsipeptide cereulide and symptoms resemble Staphylococcus aureus intoxication, but there is no rapid method available to detect B. cereus strains causing this type of disease. In this study, a polymerase chain reaction (PCR) fragment of unknown function was identified, which was shown to be specific for emetic toxin producing strains of B. cereus. The sequence of this amplicon was determined and a PCR assay was developed on this basis. One hundred B. cereus isolates obtained from different food poisoning outbreaks and diverse food sources from various geographical locations and 29 strains from other species belonging to the B. cereus group were tested by this assay. In addition, 49 non-B. cereus group strains, with special emphasis on food pathogens, were used to show that the assay is specific for emetic toxin producing B. cereus strains. The presented PCR assay is the first molecular tool for the rapid detection of emetic toxin producing B. cereus strains. 相似文献