首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmids pRAS3.1 and pRAS3.2 are two closely related, natural variants of the IncQ-2 plasmid family that have identical plasmid backbones except for two differences. Plasmid pRAS3.1 has five 6-bp repeat sequences in the promoter region of the mobB gene and four 22-bp iterons in its oriV region, whereas pRAS3.2 has only four 6-bp repeats and three 22-bp iterons. Plasmid pRAS3.1 was found to have a higher copy number than pRAS3.2, and we show that the extra 6-bp repeat results in an increase in mobB and downstream mobA/repB expression. Placement of repB (primase) behind an arabinose-inducible promoter in trans resulted in an increase in repB expression and an approximately twofold increase in the copy number of plasmids with identical numbers of 22-bp iterons. The pRAS3 plasmids were shown to have a previously unrecognized toxin-antitoxin plasmid stability module within their replicons. The ability of the pRAS3 plasmids to mobilize the oriT regions of two other plasmids of the IncQ-2 family, pTF-FC2 and pTC-F14, suggested that the mobilization proteins pRAS3 are relaxed and can mobilize oriT regions with substantially different sequences. Plasmids pRAS3.1 and pRAS3.2 were highly incompatible with plasmids pTF-FC2 and pTC-F14, and this incompatibility was removed on inactivation of an open reading frame situated downstream of the mobCDE mobilization genes rather than being due to the 22-bp oriV-associated iterons. We propose that the pRAS3 plasmids represent a third, γ incompatibility group within the IncQ-2 family plasmids.Plasmids of the IncQ family are small (<20 kb), have a broad host range, and are highly promiscuous due to their ability to be mobilized very efficiently by self-transmissible plasmids such as the IncP plasmids. They have been divided into two families, IncQ-1 and IncQ-2, based on the amino acid sequence relatedness of their RepA (helicase), RepB (primase), and RepC (DNA-binding) replication proteins and because the mobilization proteins of the two families are unrelated, consisting of three or five genes, respectively (31). IncQ-1 group plasmids include RSF1010 and the near-identical R1162, pDN1, pIE1107, pIE1115, and pIE1130, while IncQ-2 plasmids include pTF-FC2, pTC-F14, and pRAS3.IncQ-2 plasmids pRAS3.1 and pRAS3.2 were isolated in Norway from the fish pathogens Aeromonas salmonicida subsp. salmonicida and atypical A. salmonicida, respectively, while investigating plasmids that conferred resistance to tetracycline (21). The two plasmids encode identical replication and mobilization proteins, with the most important differences in the plasmid backbone being that pRAS3.1 has four 22-bp iterons in its oriV region and five 6-bp repeat sequences upstream of its mobB gene, whereas pRAS3.2 has only three iterons and four 6-bp repeat sequences. No biological studies were carried out in the initial report of the pRAS3 plasmids. As a contribution to our studies on the evolution of IncQ plasmids, our longer-term aim is to address the question of why two natural versions of the plasmid exist. Here we report on the major differences in the biology of the two plasmids. In addition, we discovered the presence of repC and mobB genes that were not detected when the sequence of pRAS3 plasmids was previously reported. We also discovered a putative toxin-antitoxin (TA) postsegregational system different from that found in other members of the IncQ plasmids and tested it for functionality.The IncQ-1 plasmids are subdivided into incompatibility groups α, β, and γ, (31), whereas the IncQ-2 plasmids are subdivided into two incompatibility groups, α and β (14). In this work we also report on the incompatibility between the pRAS3 plasmids and other members of the IncQ-2 plasmid family as well as the IncQ-1 family plasmids. Furthermore, we compare the functional relatedness of the pRAS3 mobilization system with that of previously studied IncQ-2 plasmids.  相似文献   

2.
Plasmids pRAS3.1 and pRAS3.2 are natural variants of the IncQ-2 plasmid family, that except for two differences, have identical plasmid backbones. Plasmid pRAS3.1 has four 22-bp iterons in its oriV region, while pRAS3.2 has only three 6-bp repeats and pRAS3.1 has five 6-bp repeats in the promoter region of the mobB-mobA/repB genes and pRAS3.2 has only four. In previous work, we showed that the overall effect of these differences was that when the plasmid was in an Escherichia coli host, the copy numbers of pRAS3.1 and pRAS3.2 were approximately 41 and 30, respectively. As pRAS3.1 and pRAS3.2 are likely to have arisen from the same ancestor, we addressed the question of whether one of the variants had an evolutionary advantage over the other. By constructing a set of identical plasmids with the number of 22-bp iterons varying from three to seven, it was found that plasmids with four or five iterons displaced plasmids with three iterons even though they had lower copy numbers. Furthermore, the metabolic load that the plasmids placed on E. coli host cells compared with plasmid-free cells increased with copy number from 10.9% at a copy number of 59 to 2.6% at a copy number of 15. Plasmid pRAS3.1 with four 22-bp iterons was able to displace pRAS3.2 with three iterons when both were coresident in the same host. However, the lower-copy-number pRAS3.2 placed 2.8% less of a metabolic burden on an E. coli host population, and therefore, pRAS3.2 has a competitive advantage over pRAS3.1 at the population level, as pRAS3.2-containing cells would be expected to outgrow pRAS3.1-containing cells.  相似文献   

3.
Rawlings DE 《Plasmid》2005,53(2):137-147
Two plasmids, pTF-FC2 and pTC-F14, that belong to the IncQ-like plasmid family were isolated from two related bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus, respectively. The backbone regions of the two plasmids share a sufficiently high amount of homology to indicate that they must have originated from the same ancestral plasmid. Although some of their replication proteins could complement each other, the plasmids have evolved sufficiently for their replicons to have become compatible. This compatibility has occurred by changes in the iteron sequence, RepC (iteron binding protein) specificity and the regulation properties of the RepB primase. Two of the five mobilization genes have remained highly conserved, whereas the other three genes appear to have evolved such that each plasmid is mobilized most efficiently by a different self-transmissible plasmid. Plasmids pTF-FC2 and pTC-F14 do not appear to compete at the level of mobilization. The antitoxins of the toxin-antitoxin (TA) plasmid stability systems were partly able to neutralize the toxins of the other plasmid and also to partly cross-regulate the TA systems of the other plasmid with the antitoxin of pTF-FC2 being the most effective cross-regulator. Other aspects of the evolution of the two plasmids are described and the danger of making the assumption that incompatibly of IncQ-like plasmids is a reflection of the degree of relatedness of two plasmids is discussed.  相似文献   

4.
Plasmid pTC-F14 is a 14.2-kb plasmid isolated from Acidithiobacillus caldus that has a replicon that is closely related to the promiscuous, broad-host-range IncQ family of plasmids. The region containing the mobilization genes was sequenced and encoded five Mob proteins that were related to those of the DNA processing (Dtr or Tra1) region of IncP plasmids rather than to the three-Mob-protein system of the IncQ group 1 plasmids (e.g., plasmid RSF1010 or R1162). Plasmid pTC-F14 is the second example of an IncQ family plasmid that has five mob genes, the other being pTF-FC2. The minimal region that was essential for mobilization included the mobA, mobB, and mobC genes, as well as the oriT gene. The mobD and mobE genes were nonessential, but together, they enhanced the mobilization frequency by approximately 300-fold. Mobilization of pTC-F14 between Escherichia coli strains by a chromosomally integrated RP4 plasmid was more than 3,500-fold less efficient than the mobilization of pTF-FC2. When both plasmids were coresident in the same E. coli host, pTC-F14 was mobilized at almost the same frequency as pTF-FC2. This enhanced pTC-F14 mobilization frequency was due to the presence of a combination of the pTF-FC2 mobD and mobE gene products, the functions of which are still unknown. Mob protein interaction at the oriT regions was unidirectionally plasmid specific in that a plasmid with the oriT region of pTC-F14 could be mobilized by pTF-FC2 but not vice versa. No evidence for any negative effect on the transfer of one plasmid by the related, potentially competitive plasmid was obtained.  相似文献   

5.
Abstract: A 12.4-kb plasmid, pTF-FC2, that was isolated from Thiobacillus ferrooxidans and which is capable of replication in a wide range of Gram-negative bacteria, has been sequenced. The extent of the regions involved in both replication and mobilization have been delineated. The site of initiation of replication ( oriV ) has been localized on a 185-bp fragment and the origin of transfer ( oriT ) on a 138-bp fragment. Three proteins that were essential for replication and four that were essential for mobilization have been identified. The origin of replication was clearly similar to that of the IncQ plasmids although no complementation or incompatibility between pTF-FC2 and the IncQ plasmid, R300B, was detected. There was a clear similarity in the size,location and amino acid sequence of the proteins of the pTF-FC2 mobilization region with those of the TraI region of the IncP plasmids, RP4 and R751.Two inverted repeated sequences which had 37/38-bp and 38/38-bp sequence identity with the Tn 21 transposon were identified. The C-terminal part of a transposase and the N-terminal portion of a resolvase were located between the inverted repeats. These open reading frames are most likely the remnants of a defective transposon. A protein with homology to a mercury- resistance regulator was also present within the transposon-like element although no gene encoding for mercury reductase could be indentified.  相似文献   

6.
The minimum region required for replication of the broad-host-range Thiobacillus ferrooxidans plasmid pTF-FC2 in Escherichia coli was shown to be contained on a 2.05-kilobase fragment of DNA. A 184-base-pair fragment that was required in cis for plasmid replication was identified. This region was also involved in plasmid incompatibility. Nucleotide sequencing of this region revealed three perfectly conserved 22-base-pair tandemly repeated sequences. A comparison of this region with the equivalent region of the broad-host-range plasmid R1162 showed that the repeated sequences had 60% nucleotide homology. The 106-base-pair region immediately adjacent to the repeated sequences was 75% homologous. These plasmids were compatible.  相似文献   

7.
A moderately thermophilic (45 to 50 degrees C), highly acidophilic (pH 1.5 to 2.5), chemolithotrophic Acidithiobacillus caldus strain, f, was isolated from a biooxidation process used to treat nickel ore. Trans-alternating field electrophoresis analysis of total DNA from the A. caldus cells revealed two plasmids of approximately 14 and 45 kb. The 14-kb plasmid, designated pTC-F14, was cloned and shown by replacement of the cloning vector with a kanamycin resistance gene to be capable of autonomous replication in Escherichia coli. Autonomous replication was also demonstrated in Pseudomonas putida and Agrobacterium tumefaciens LBA 4404, which suggested that pTC-F14 is a broad-host-range plasmid. Sequence analysis of the pTC-F14 replicon region revealed five open reading frames and a replicon organization like that of the broad-host-range IncQ plasmids. Three of the open reading frames encoded replication proteins which were most closely related to those of IncQ-like plasmid pTF-FC2 (amino acid sequence identities: RepA, 81%; RepB, 78%; RepC, 74%). However, the two plasmids were fully compatible and pTC-F14 represents a new IncQ-like plasmid replicon. Surprisingly, asymmetrical incompatibility was found with the less closely related IncQ plasmid R300B derivative pKE462 and the IncQ-like plasmid derivative pIE1108. Analysis of the pTC-F14 oriV region revealed five direct repeats consisting of three perfectly conserved 22-bp iterons flanked by iterons of 23 and 21 bp. Plasmid pTC-F14 had a copy number of 12 to 16 copies per chromosome in both E. coli, and A. caldus. The rep gene products of pTC-F14 and pTF-FC2 were unable to functionally complement each other's oriV regions, but replication occurred when the genes for each plasmid's own RepA, RepB, and RepC proteins were provided in trans. Two smaller open reading frames were found between the repB and repA genes of pTC-F14, which encode proteins with high amino acid sequence identity (PasA, 81%; PasB, 72%) to the plasmid addiction system of pTF-FC2. This is the second time a plasmid stability system of this type has been found on an IncQ-like plasmid.  相似文献   

8.
Plasmid pTC-F14 contains a plasmid stability system called pas (plasmid addiction system), which consists of two proteins, a PasA antitoxin and a PasB toxin. This system is closely related to the pas of plasmid pTF-FC2 (81 and 72% amino acid identity for PasA and PasB, respectively) except that the pas of pTF-FC2 contains a third protein, PasC. As both pTC-F14 and pTF-FC2 are highly promiscuous broad-host-range plasmids isolated from bacteria that share a similar ecological niche, the plasmids are likely to encounter each other. We investigated the relative efficiencies of the two stability systems and whether they had evolved apart sufficiently for each pas to stabilize a plasmid in the presence of the other. The three-component pTF-FC2 pas was more efficient at stabilization of a heterologous tester plasmid than the two component pas of pTC-F14 in Escherichia coli host cells (+/- 92% and +/- 60% after 100 generations, respectively). The PasA antidote of each pas was unable to neutralize the PasB toxin of the other plasmid. The pas proteins of each plasmid autoregulated their own expression as well as that of the pas of the other plasmid. The pas of pTF-FC2 was more effective at repressing the pas operon of pTC-F14 than the pas of pTC-F14 was able to repress itself or the pas of pTF-FC2. This increased efficiency was not due to the PasC of pTF-FC2. The effect of this stronger repression was that pTF-FC2 displaced pTC-F14 when the two plasmids were coresident in the same E. coli host cell. Plasmid curing resulted in the arrest of cell growth but did not cause cell death, and plasmid stability was not influenced by the E. coli mazEF genes.  相似文献   

9.
Boyd J  Williams J  Curtis B  Kozera C  Singh R  Reith M 《Plasmid》2003,50(2):131-144
The nucleotide sequences of three small (5.2-5.6 kb) plasmids from Aeromonas salmonicida subsp. salmonicida A449 are described. Two of the plasmids (pAsa1 and pAsa3) use a ColE2-type replication mechanism while the third (pAsa2) is a ColE1-type replicon. Insertions in the Rep protein and oriV region of the ColE2-type plasmids provide subtle differences that allow them to be maintained compatibly. All three plasmids carry genes for mobilization (mobABCD), but transfer genes are absent and are presumably provided in trans. Two of the plasmids, pAsa1 and pAsa3, carry toxin-antitoxin gene pairs, most probably to ensure plasmid stability. One open reading frame (ORF), orf1, is conserved in all three plasmids, while other ORFs are plasmid-specific. A survey of A. salmonicida strains indicates that pAsa1 and pAsa2 are present in all 12 strains investigated, while pAsa3 is present in 11 and a fourth plasmid, pAsal1, is present in 7.  相似文献   

10.
Tn5393c containing strA-strB was identified as part of R plasmid pRAS2 from the fish pathogen Aeromonas salmonicida subsp. salmonicida. This is the first time an intact and active transposon in the Tn5393 family has been reported in an ecological niche other than an agricultural habitat.  相似文献   

11.
Plasmids harboring multiple antimicrobial-resistance determinants (R plasmids) were transferred in simulated natural microenvironments from various bacterial pathogens of human, animal, or fish origin to susceptible strains isolated from a different ecological niche. R plasmids in a strain of the human pathogen Vibrio cholerae O1 E1 Tor and a bovine Escherichia coli strain were conjugated to a susceptible strain of the fish pathogenic bacterium Aeromonas salmonicida subsp. salmonicida in marine water. Conjugations of R plasmids between a resistant bovine pathogenic E. coli strain and a susceptible E. coli strain of human origin were performed on a hand towel contaminated with milk from a cow with mastitis. A similar conjugation event between a resistant porcine pathogenic E. coli strain of human origin was studied in minced meat on a cutting board. Conjugation of R plasmids between a resistant strain of the fish pathogenic bacterium A. salmonicida subsp. salmonicida and a susceptible E. coli strain of human origin was performed in raw salmon on a cutting board. R plasmids in a strain of A. salmonicida subsp. salmonicida and a human pathogenic E. coli strain were conjugated to a susceptible porcine E. coli strain in porcine feces. Transfer of the different R plasmids was confirmed by plasmid profile analyses and determination of the resistance pattern of the transconjugants. The different R plasmids were transferred equally well under simulated natural conditions and under controlled laboratory conditions, with median conjugation frequencies ranging from 3 x 10(-6) to 8 x 10(-3). The present study demonstrates that conjugation and transfer of R plasmids is a phenomenon that belongs to the environment and can occur between bacterial strains of human, animal, and fish origins that are unrelated either evolutionarily or ecologically even in the absence of antibiotics. Consequently, the contamination of the environment with bacterial pathogens resistant to antimicrobial agents is a real threat not only as a source of disease but also as a source from which R plasmids can easily spread to other pathogens of diverse origins.  相似文献   

12.
H Kruse  H Srum 《Applied microbiology》1994,60(11):4015-4021
Plasmids harboring multiple antimicrobial-resistance determinants (R plasmids) were transferred in simulated natural microenvironments from various bacterial pathogens of human, animal, or fish origin to susceptible strains isolated from a different ecological niche. R plasmids in a strain of the human pathogen Vibrio cholerae O1 E1 Tor and a bovine Escherichia coli strain were conjugated to a susceptible strain of the fish pathogenic bacterium Aeromonas salmonicida subsp. salmonicida in marine water. Conjugations of R plasmids between a resistant bovine pathogenic E. coli strain and a susceptible E. coli strain of human origin were performed on a hand towel contaminated with milk from a cow with mastitis. A similar conjugation event between a resistant porcine pathogenic E. coli strain of human origin was studied in minced meat on a cutting board. Conjugation of R plasmids between a resistant strain of the fish pathogenic bacterium A. salmonicida subsp. salmonicida and a susceptible E. coli strain of human origin was performed in raw salmon on a cutting board. R plasmids in a strain of A. salmonicida subsp. salmonicida and a human pathogenic E. coli strain were conjugated to a susceptible porcine E. coli strain in porcine feces. Transfer of the different R plasmids was confirmed by plasmid profile analyses and determination of the resistance pattern of the transconjugants. The different R plasmids were transferred equally well under simulated natural conditions and under controlled laboratory conditions, with median conjugation frequencies ranging from 3 x 10(-6) to 8 x 10(-3). The present study demonstrates that conjugation and transfer of R plasmids is a phenomenon that belongs to the environment and can occur between bacterial strains of human, animal, and fish origins that are unrelated either evolutionarily or ecologically even in the absence of antibiotics. Consequently, the contamination of the environment with bacterial pathogens resistant to antimicrobial agents is a real threat not only as a source of disease but also as a source from which R plasmids can easily spread to other pathogens of diverse origins.  相似文献   

13.
Both biotic and abiotic characteristics of an ecosystem play an important role in the horizontal transfer of DNA in nature. The abiotic factor temperature has a great impact on such transfers as it controls the metabolic activity of mesophilic microorganisms. Moreover, psychrophilic bacteria, which are not affected by low temperatures, are considered to be potential donors of DNA to mesophilic bacteria under temperature stress conditions. In our study, mesophilic Aeromonas spp. strains isolated from fresh fish were genotypically identified and used as recipients in in vitro conjugal transfer experiments using plasmid pRAS1 from psychrophilic strain Aeromonas salmonicida 718 at three different temperatures (8, 15 and 20 °C). The transfer of the plasmid was confirmed by identifying the elements of the integron in pRAS1. A low temperatures did not prevent the transfer of the pRAS1 plasmid to Aeromonas veronii, A. media, A. hydrophila and A. caviae strains, which showed detectable conjugation frequencies of 10–8 at 8 °C. In other strains of the same species, transconjugants were not detected, which indicated that the genetic background of each strain directly affected the ability to be a recipient of this plasmid at the temperatures tested. Our results demonstrate that mesophilic Aeromonas spp. strains are potential reservoirs of extrachromosomal genetic material. Implications of this plasmid transfer at low temperatures and its possible consequences for human health are discussed.  相似文献   

14.
The broad host-range IncQ-2 family plasmid, pTF-FC2, is a mobilizable, medium copy number plasmid that lacks an active partitioning system. Plasmid stability is enhanced by a toxin–antitoxin (TA) system known as pas (plasmid addiction system) that is located within the replicon between the repB (primase) and the repA (helicase) and repC (DNA-binding) genes. The discovery of a closely related IncQ-2 plasmid, pRAS3, with a completely different TA system located between the repB and repAC genes raised the question of whether the location of pas within the replicon had an effect on the plasmid in addition to its ability to act as a TA system. In this work we demonstrate that the presence of the strongly expressed, autoregulated pas operon within the replicon resulted in an increase in the expression of the downstream repAC genes when autoregulation was relieved. While deletion of the pas module did not affect the average plasmid copy number, a pas-containing plasmid exhibited increased stability compared with a pas deletion plasmid even when the TA system was neutralized. It is proposed that the location of a strongly expressed, autoregulated operon within the replicon results in a rapid, but transient, expression of the repAC genes that enables the plasmid to rapidly restore its normal copy number should it fall below a threshold.  相似文献   

15.
16.
A total of 38 strains of atypical Aeromonas salmonicida , three oxidase-negative but otherwise typical Aer. salmonicida , three typical Aer. salmonicida , and two reference strains, isolated from several countries and fish species were examined with respect to rRNA gene restriction patterns (ribotypes) and plasmid profiles. Most epidemiologically unrelated strains had different ribotypes, whereas isolates from the same outbreak were identical. All strains, except one, carried one or more large plasmids (> 55 kbp) and all strains, except two, additionally carried one or more smaller plasmids. Many strains isolated from the same outbreak showed different plasmid profiles although some plasmids were identical. The results suggest the existence of several atypical Aer. salmonicida. It also seems that ribotypes are stable properties for these bacteria while the plasmids are more labile.  相似文献   

17.
Plasmids belonging to the IncU incompatibility group are mobile genetic elements isolated frequently from Aeromonas spp. These plasmids share structural and functional characteristics and often carry Class-1 integrons bearing antibiotic resistance genes. In this work the ability of two IncU plasmids, pAr-32 and pRAS1 to establish in different A. hydrophila strains after conjugal transfer was studied. In vitro transfer frequencies on solid surface ranged from 10−1 to 10−6 for pAr-32 and from 10−3 to 10−5 for pRAS1. While carrying out these experiments we detected four strains unable to acquire plasmid pRAS1, indicating that the genetic background of recipients affects the establishment of the plasmid. We explored the possible reasons why these strains failed to yield transconjugants after mating experiments using A. salmonicida 718 as a donor. Factors included donor cell recognition, incompatibility, surface exclusion and restriction of incoming DNA. We found that none of these factors could explain the refractivity of non-receptive A. hydrophila strains to yield transconjugants. Although we do not know the reasons of this refractivity, we may speculate that these isolates lack a product necessary to replicate or stabilize plasmid pRAS1. Alternatively, these strains could contain a product that impedes plasmid establishment.  相似文献   

18.
Strains of Vibrio salmonicida isolated from Atlantic salmon (Salmo salar) and rainbow trout (Salmo gairdneri) suffering from cold-water vibriosis could be divided on the basis of plasmid profiles into four different categories. Of 32 strains, 19% harbored three plasmids of 24, 3.4, and 26 megadaltons (MDa), 69% harbored the 24- and 3.4-MDa plasmids but not the 2.6-MDA plasmid, and 9% harbored only the 24-MDA plasmid. The fourth category, which consisted of only one strain, harbored a plasmid of 10 MDa. In spite of different plasmid patterns, the strains of V. salmonicida were very similar with respect to biochemical reactions. The one-third of the V. salmonicida strains which were serotyped were of the same type. The 50% lethal doses, which were determined by intraperitoneal injection, ranged from 4 x 106 to 1 x 108 CFU per fish.  相似文献   

19.
S Kosono  M Maeda  F Fuji  H Arai    T Kudo 《Applied microbiology》1997,63(8):3282-3285
Rhodococcus erythropolis TA421, a polychlorinated biphenyl and biphenyl degrader isolated from a termite ecosystem, has seven bphC genes expressing 2,3-dihydroxybiphenyl dioxygenase activity. R. erythropolis TA421 harbored a large and probably linear plasmid on which three (bphC2, bphC3, and bphC4) of the seven bphC genes were located. A non-biphenyl-degrading mutant, designated strain TA422, was obtained spontaneously from R. erythropolis TA421. TA422 lacked the plasmid, suggesting that the three bphC genes were involved in the degradation of biphenyl. Southern blot analyses showed that R. erythropolis TA421 and Rhodococcus globerulus P6 have a similar set of bphC genes and that the genes for biphenyl catabolism are located on plasmids of different sizes. These results indicated that the genes encoding the biphenyl catabolic pathway in Rhodococcus strains are borne on plasmids.  相似文献   

20.
Dube T  Thomson JA 《Plasmid》2003,50(1):1-11
The ability of the plasmid pTF-FC2 to transfer genes into plants was investigated. Using this plasmid as the backbone two plasmids were constructed namely pTD1 and pDER-bar. These plasmids contained, as plant selectable markers, the nptII and the bar genes, respectively. The nptII gene was flanked by the right and left borders and the bar gene was not. Transgenic plants were obtained through the co-cultivation of tobacco leaf discs with the Agrobacterium tumefaciens strain LBA4404(pAL4404)(pDER-bar). Molecular and genetic analysis indicated that the bar gene had been stably integrated into the plant genome and had been inherited in a Mendelian fashion. Integration was shown to be polar and unidirectional and in some cases the entire plasmid was found to have integrated into the plant genome. Interestingly, no plants were generated from tobacco leaf discs that were co-cultivated with the strain C58C1(pMP90)(pTD1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号