首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-pressure stopped-flow spectrometry at low temperatures   总被引:1,自引:0,他引:1  
A stopped-flow instrument operating over temperature and pressure ranges of +30 to -20 degrees C and 10(-3) to 2 kbar , respectively, is described. The system has been designed so that it can be easily interfaced with many commercially available spectrophotometers of fast response time, with the aid of quartz fiber optics. The materials used for the construction are inert, metal free and the apparatus has proven to be leak free at temperatures as low as -20 degrees C under a pressure of 2 kbar . The performance of the instrument was tested by measuring the rate of reduction of cytochrome c with sodium dithionite and the 2,6-dichloroindophenol/ascorbate reaction. The dead time of the system has been evaluated to be 20, 50, and congruent to 100 ms in water at 20 degrees C, in 40% ethylene glycol/water, and at 20 degrees C and -15 degrees C, respectively. These values are rather pressure independent up to 2 kbar . Application of the bomb was demonstrated using the cytochrome c peroxidase/ethyl peroxide reaction. This process occurred in two phases and an increase in pressure decreased the rates of reactions indicating two positive volumes of activation (delta V not equal to app (fast) = 9.2 +/- 1.5 ml X mol-1; delta V not equal to app (slow) = 14 +/- 1.5 ml X mol-1, temperature 2 degrees C). The data suggest that the fast reaction could involve a hydrophobic bond, whereas the slow process could be associated with a stereochemical change of the protein. The problem of temperature equilibrium for high-pressure experiments is also discussed.  相似文献   

2.
Many proteins populate partially organized structures during folding. Since these intermediates often accumulate within the dead time (2-5 ms) of conventional stopped-flow and quench-flow devices, it has been difficult to determine their role in the formation of the native state. Here we use a microcapillary mixing apparatus, with a time resolution of approximately 150 micros, to directly follow the formation of an intermediate in the folding of a four-helix protein, Im7. Quantitative kinetic modeling of folding and unfolding data acquired over a wide range of urea concentrations demonstrate that this intermediate ensemble lies on a direct path from the unfolded to the native state.  相似文献   

3.
The isomerization of horse-heart ferricytochrome c caused by varying pH was kinetically studied by using circular dichroism (CD) and optical absorption stopped-flow techniques. In the pH range of 7--13, the existence of the three different forms of ferricytochrome c (pH less than 10, pH 10--12, and pH greater than 12) was indicated from the statistical difference CD spectra. On the basis of analyses of the stopped-flow traces in the near-ultraviolet and Soret wavelength regions, the isomerization of ferricytochrome c from neutral form to the above three alkaline forms was interpreted as follows (1) below pH 10, the replacement of the intrinsic ligand of methionine residue by lysine residue occurs; (2) between pH 10 and 12, the uncoupling of the polypeptide chain from close proximity of the heme group occurs first, followed by the interconversion of the intrinsic ligands; and (3) above pH 12, hydroxide form of ferricytochrome c is formed, though the replacement of the intrinsic ligand by extrinsic ligands may occur via different routes from those below pH 12. The CD changes at 288 nm and in the Soret region caused by the pH-jump (down) from pH 6.0 to 1.6 were compared with the appearance of the 620-nm absorption band ascribed to the formation of the high-spin form of ferricytochrome c. Both CD and absorption changes indicated that the isomerization at pH 1.6 consisted of two processes: one proceeded within the dead-time (about 2 ms) of the stopped-flow apparatus and the other proceeded at a determinable rate with the apparatus. On the basis of these results, the isomerization of ferricytochrome c at pH 1.6 was explained as follows: (1) the transition from the low-spin form to the high-spin forms occurs within about 2 ms, the dead-time of the stopped-flow apparatus; and (2) the polypeptide chain is unfolded after the formation of the high-spin form.  相似文献   

4.
We investigated refolding processes of β-sheeted protein FHA domains (FHA1 domain of Rad53 and Ki67 FHA domain) by cryo-stopped-flow (SF) method combined with far-ultraviolet (far-UV) circular dichroism (CD, the average secondary structure content) and small angle X-ray scattering (SAXS, measuring the radius of gyration). In case of FHA1 domain of Rad53, no detectable time course was observed except the initial burst on its refolding process at 4 °C, suggesting that the FHA1 domain of Rad53 was already refolded to its native state within the dead time of the SF apparatus and the rate of the refolding is too fast to be observed at this temperature. In contrast, there was an observable α-helical burst at −15 °C and −20 °C in the presence of 45% ethylene glycol (EGOH) by CD-SF. Besides, the radius of gyration (Rg) of the burst phase intermediate at −20 °C shows the intermediate is already compact, and the compaction process was accompanied with the decrease of α-helical content at the same temperature.  相似文献   

5.
Cryoprotectors (propylene glycol), ethylene glycol, polyethylene glycol-1500 and dimethyl sulphoxide) are studied for their effect on permeability of liposomes for incorporated molecules of 5,5-dithiobis-2-nitrobenzoic acid (DTNB) under cooling within a temperature range from 0 degree C to -25 degrees C. A similarity is found in the way of ethylene glycol and propylene glycol, dimethyl sulphoxide and polyethylene glycol-1500 effect on the liposome permeability way. Cooling in the presence of ethylene glycol and propylene glycol causes changes in liposome permeability with a local maximum at -18 degrees C. In the medium with 2M NaCl and ethylene glycol, liposomes were resistant to cooling. Dimethyl sulphoxide and polyethylene glycol-1500 induced a two-phase kinetics of changes in liposome permeability, the first phase being within the 0 = -9 degrees C and the second--within -9--25 degrees C temperature ranges. The found differences are supposed to be associated with the effect of the cryoprotective compounds on the lipid crystallization in a lower-temperatures range.  相似文献   

6.
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties.  相似文献   

7.
To get new structural insights into different phases of the renaturation of ribonuclease T1 (RNase T1), the refolding of the thermally unfolded protein was initiated by rapid temperature jumps and detected by time-resolved Fourier-transform infrared spectroscopy. The characteristic spectral changes monitoring the formation of secondary structure and tertiary contacts were followed on a time scale of 10(-3) to 10(3) seconds permitting the characterization of medium and slow folding reactions. Additionally, structural information on the folding events that occurred within the experimental dead time was indirectly accessed by comparative analysis of kinetic and steady-state refolding data. At slightly destabilizing refolding temperatures of 45 degrees C, which is close to the unfolding transition region, no specific secondary or tertiary structure is formed within 180 ms. After this delay all infrared markers bands diagnostic for individual structural elements indicate a strongly cooperative and relatively fast folding, which is not complicated by the accumulation of intermediates. At strongly native folding temperatures of 20 degrees C, a folding species of RNase T1 is detected within the dead time, which already possesses significant amounts of antiparallel beta-sheets, turn structures, and to some degree tertiary contacts. The early formed secondary structure is supposed to comprise the core region of the five-stranded beta-sheet. Despite these nativelike characteristics the subsequent refolding events are strongly heterogeneous and slow. The refolding under strongly native conditions is completed by an extremely slow formation or rearrangement of a locally restricted beta-sheet region accompanied by the further consolidation of turns and denser backbone packing. It is proposed that these late events comprise the final packing of strand 1 (residues 40-42) of the five-stranded beta-sheet against the rest of this beta-sheet system within an otherwise nativelike environment. This conclusion was supported by the comparison of refolding of RNase T1 and its variant W59Y RNase T1 that enabled the assignment of these very late events to the trans-->cis isomerization reaction of the prolyl peptide bond preceding Pro-39.  相似文献   

8.
Core particle DNA unfolding and refolding are followed by stopped-flow circular dichroism technique. When core particles are dissociated in the stopped-flow cuvette, the high CD deviation corresponding to the dissociated state is reached in the first millisecond, which means that the dissociation process is completed within the dead time of the apparatus which is ~1 ms. The same conclusion can be drawn when core particles are reassociated, since the low CD value, typical of the associated state, is immediately reached. Similarly histone release from chromatin is a very fast process. We also include some points of discussion about core particle assembly process.  相似文献   

9.
The temperature dependence of the kinetics of the binding of ATP to myosin subfragment-1 was studied by an ATP chase technique in a rapid-flow-quench apparatus: (formula; see text) A temperature range of 30 degrees C to -15 degrees C was obtained with ethylene glycol as antifreeze. The Arrhenius plot of k2 is discontinuous with a jump at 12 degrees C. Above the jump delta H+ = 9.5 kcal/mol, below delta H+ = 28.5 kcal/mol. Few such Arrhenius plots are recorded in the literature but they are predicted from theory. Thus, we explain our results as a phase change of the subfragment 1-ATP system at 12 degrees C. This is in agreement with certain structural studies.  相似文献   

10.
The kinetics at 423 nm of the binding of carbon monoxide to ferrous horseradish peroxidase were studied as a function of three parameters: pressure (1-1200 bar), temperature (34 to -20 degrees C) and solvent (water, 40% ethylene glycol, 50% methanol) using a high-pressure stopped-flow apparatus. By using transition state theory the thermodynamic quantities delta V, delta S and delta H were determined under these different experimental conditions and were found to be greatly modulated by the physico-chemical parameters of the media. The results suggest that the macroscopic thermodynamic response is mainly controlled by the solvent. By adjusting two variables (among T, P, solvent), it is possible either to amplify or to cancel out the effect of the third.  相似文献   

11.
The refolding kinetics of horse cyanometmyoglobin induced by concentration jump of urea was investigated by five optical probe stopped-flow methods: absorption at 422 nm, tryptophyl fluorescence at around 340 nm, circular dichroism (CD) at 222 nm, CD at 260 nm, and CD at 422 nm. In the refolding process, we detected three phases with rate constants of > 1 × 102 s?1, (4.5–9.3) S?1, and (2–5) × 10?3 s?1. In the fastest phase, a substantial amount of secondary structure (40%) is formed within the dead time of the CD stopped-flow apparatus (10.7 ms). The kinetic intermediate populated in the fastest phase is shown to capture a hemindicyanide, suggesting that a “heme pocket precursor” recognized by hemindicyanide must be constructed within the dead time. In the middle phase, most of secondary and tertiary structures, especially around the captured hemindicyanide, have been constructed. In the slowest phase, we detected a minor structural rearrangement accompanying the ligand-exchange reaction in the fifth coordination of ferric iron. We present a possible model for the refolding process of myoglobin in the presence of the heme group. © 1994 Wiley-Liss, Inc.  相似文献   

12.
We have used a stopped-flow apparatus to reinvestigate reports, based on the observation of "burst" kinetics, of an intermediate prior to the acyl-enzyme complex in hydrolysis reactions of anilides catalyzed by trypsin and elastase [M. W. Hunkapiller, M. D. Forgac and J. H. Richards (1976) Biochemistry 15, 5581-5588; D. D. Petkov (1978) Biochim. Biophys. Acta, 523, 538-541; A. L. Fink and P. Meehan (1979) Proc. Natl Acad. Sci. USA, 76, 1566-1569; P. Compton and A. L. Fink (1980) Biochem. Biophys. Res. Commun. 93, 427-431]. We studied the hydrolysis of several anilide substrates by bovine and porcine trypsin and porcine elastase between -30 degrees C and 20 degrees C. In no case did we record true "burst" kinetics. We show that confusion spectral changes can arise from incomplete mixing, thermal gradients, or heterogeneity of the substrate. We conclude that there is no solid spectroscopic evidence at present for the existence of a tetrahedral intermediate in the hydrolysis of amides by serine proteinases. The substrate N-acetyl-L-alanyl-L-prolyl-L-alanine 4-nitroanilide is a mixture of two isomers trans and cis about the L-alanyl-L-propyl peptide bond. It appears that elastase hydrolysis the cis isomer more rapidly than the trans isomer and this could lead to false "burst" kinetics. We describe the construction of the stopped-flow apparatus designed for cryoenzymology used for this work that has novel features and is adaptable to a variety of spectrophotometers. Solutions can be handled under anaerobic conditions. A window allows the drive syringes to be observed or exposed to light for photochemical experiments. The apparatus operates over the temperature range -35 degrees C to + 25 degrees C. The dead time is under 5 ms. A recording system is described that permits one to follow reactions over a wide time scale covering half-time of the order of several milliseconds to hours.  相似文献   

13.
The kinetics of protein folding for horse ferricytochrome c was investigated by stopped-flow methods, using far-UV circular dichroism (CD), near-UV CD, and tryptophan fluorescence to probe the formation of secondary structure and tertiary interactions. In the far-UV region of the CD spectrum (222 nm), 44% of the total change associated with refolding occurs within the dead time of the stopped-flow experiment, indicating that a significant amount of helical secondary structure is formed in less than 4 ms. The remaining changes in the ellipticity at 222 nm occur in two kinetic phases with time constants of about 40 ms and 0.7 s, respectively. In contrast, there is no evidence for rapid changes in the ellipticity at 289 nm: an aromatic CD band, which is indicative of the formation of a tightly packed core, only begins to appear in a 400-ms step and is completed in a final 10-s phase. The fluorescence of a single tryptophan at position 59, which becomes quenched upon folding via nonradiative energy transfer to the heme group, provides complementary information on the condensation of the polypeptide chain during refolding. The fluorescence-detected stopped-flow folding kinetics of ferricytochrome c exhibits a 35% decrease in fluorescence during the dead time, suggesting that a substantial decrease in the average tryptophan-heme distance occurs on a submillisecond time scale. The subsequent fluorescence changes exhibit two prominent phases with time constants of about 20 and 300 ms, followed by a minor 5-s phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A "slow" temperature jump apparatus built from a stopped-flow machine   总被引:1,自引:0,他引:1  
A simple modification to a standard thermostated stopped-flow machine is described which allows it to be used as a temperature jump machine. Temperature jumps larger than 10 degrees C can be achieved in less than 150 ms which makes it useful for the range of times where conventional rapid temperature jumps are not applicable. The apparatus has a sample size of 300 microliters and can produce temperature jumps both above and below the initial temperature.  相似文献   

15.
J Mo  M E Holtzer  A Holtzer 《Biopolymers》1992,32(7):751-756
The kinetics of folding random coils of alpha alpha-tropomyson (Tm) subsequences to two-chain coiled coils was studied by stopped-flow CD. Subsequences studied were those comprising residues 11-127 (11Tm127), 142-281 (142Tm281), 1-189 (1Tm189), and 190-284 (190Tm284) of the parent 284-residue alpha-tropomyosin chain. Unlike the parent, subsequences 1Tm189 and 11Tm127 fold within the dead time of the instrument (less than 0.04 s). Like the parent, subsequences 142Tm281 and 190Tm284 fold in two phases. In the fast phase, 45% and 32%, respectively, of the equilibrium helical content form. In the time-resolvable, first-order slow phase (k-1 = 2.7 s at 20 degrees C for 142Tm281 and k-1 = 2.0 s at 15 degrees C for 190Tm284), the remaining structure forms. Neither reduced 142Tm281 nor 190Tm284 show any dependence of the rate on concentration, so chain association occurs in the fast phase. Like the parent 142Tm281 forms more helical content in the fast phase when cross-linked at C-190, and the remaining structure forms slowly with rate parameters similar to those of the reduced species. Comparison of the folding behavior of C- and N-terminal subsequences with that of the parent protein suggests that the slow phase in the parent is caused by a folding bottleneck somewhere nearer the C-terminus. However, rapid association and partial folding near the N-terminus is not necessary for prompt folding, since even 190Tm284 chains associate and partially fold very rapidly (less than 0.04 s), and then complete the folding in seconds.  相似文献   

16.
Saigo S  Shibayama N 《Biochemistry》2003,42(32):9669-9676
Theory and simulations predict that the folding kinetics of protein-like heteropolymers become nonexponential and glassy (i.e., controlled by escape from different low-energy misfolded states) at low temperatures, but there was little experimental evidence for such behavior of proteins. We have developed a stopped-flow instrument working reliably down to -40 degrees C with high mixing capability and applied it to study the refolding kinetics of horse cytochrome c (cyt c) and hen egg white lysozyme at temperatures below 0 degrees C in the presence of antifreeze NaCl, LiCl, or ethylene glycol and above 0 degrees C in the presence and absence of antifreeze. The refolding was initiated by rapid dilution of the guanidine hydrochloride unfolded proteins, and the kinetics were monitored by intrinsic tryptophan fluorescence. Highly nonexponential kinetics extended over 3 decades in time (0.01-10 s) were observed in the early phases of the refolding of cyt c and lysozyme in the temperature range of -35 to 5 degrees C. These results are in agreement with the theoretical prediction, suggesting that the folding energy landscapes of these proteins are rugged in the upper portions.  相似文献   

17.
N.C. Millar  M.A. Geeves 《FEBS letters》1983,160(1-2):141-148
The ATP-induced dissociation of actoS1 has been studied at temperatures between −10°C and +30°C in a stopped-flow apparatus using ethylene glycol as antifreeze. At temperatures at and below 0°C the observed rate of the dissociation of actin shows a hyperbolic dependence on ATP concentration. This is interpreted in terms of a rapid binding of ATP followed by an isomerisation of the ternary complex which results in actin dissociation. Ethylene glycol weakens ATP binding but the rate of the isomerisation is unaffected. The second order rate constant for the dissociation shows a break in the Arrhenius plot.  相似文献   

18.
C Tesi  K Kitagishi  F Travers  T Barman 《Biochemistry》1991,30(16):4061-4067
The post-ATP binding steps of myosin subfragment 1 (S1) and actomyosin subfragment 1 (actoS1) ATPases were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The cleavage and release of Pi steps were studied by the rapid-flow quench method and the interaction of actin with S1 plus ATP by light scattering in a stopped-flow apparatus. At -15 degrees C, the interaction of actin with S1 remains tight, and the Km for the activation of S1 ATPase is very small (0.3 microM). The chemical data were interpreted by E + ATP----E*.ATP----E**.ADP.Pi----E*.ADP----products, where E is S1 or actoS1. In Pi burst experiments with S1, there was a large Pi burst of free Pi, but E**.ADP.Pi could not be detected. Here the predominant complex in the seconds time range is E*.ATP and in the steady-state E*.ADP. With actoS1, there was a small Pi burst of E**.ADP.Pi, evidence that the cleavage steps for S1 and actoS1 are different. From the stopped-flow experiments, the dissociation of actoS1 by ATP was complete, even at actin concentrations 60X its Km. Further, no interaction of actin with the key intermediate M*.ATP could be detected. Therefore, at -15 degrees C, actoS1 ATPase occurs by a dissociative pathway; in particular, the cleavage step appears to occur in the absence of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Enoki S  Saeki K  Maki K  Kuwajima K 《Biochemistry》2004,43(44):14238-14248
Green fluorescent protein from the jellyfish Aequorea victoria can serve as a good model protein to understand protein folding in a complex environment with molecular chaperones and other macromolecules such as those in biological cells, but little is known about the detailed mechanisms of the in vitro folding of green fluorescent protein itself. We therefore investigated the kinetic refolding of a mutant (F99S/M153T/V163A) of green fluorescent protein, which is known to mature more efficiently than the wild-type protein, from the acid-denatured state; refolding was observed by chromophore fluorescence, tryptophan fluorescence, and far-UV CD, using a stopped-flow technique. In this study, we demonstrated that the kinetics of the refolding of the mutant have at least five kinetic phases and involve nonspecific collapse within the dead time of a stopped-flow apparatus and the subsequent formation of an on-pathway intermediate with the characteristics of the molten globule state. We also demonstrated that the slowest phase and a major portion of the second slowest phase were rate-limited by slow prolyl isomerization in the intermediate state, and this rate limitation accounts for a major portion of the observed kinetics in the folding of green fluorescent protein.  相似文献   

20.
In 40% ethylene glycol, gamma/2 = 0.11 and pH* 8.2, fructose 1,6-bisphosphate aldolase from rabbit muscle undergoes a transition: above 3 degrees C it displays 4 equivalent dihydroxyacetone phosphate binding sites, below -1 degree C the sites decrease to 2. The dissociation constant of the aldolase-dihydroxyacetone phosphate complex decreases from 10 microM at 3 degrees C to 2.65 microM at -1 degree C, its van't Hoff plot being linear between -1 degree C and -13 degrees C. The rate of the detritiation of the aldolase-(3S)-[3-3H]dihydroxyacetone phosphate complex is strongly influenced by temperature. In 40% ethylene glycol, gamma/2 = 0.01 and pH* 8.2, the apparent rate constant is 7.6 sec-1 at -5 degrees C and 0.012 sec-1 at -24 degrees C. The Arrhenius plot is linear between -5 degrees C and -24 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号