首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Indoor releases of Spalangia cameroni Perkins and Muscidifurax raptor Girauelt & Sanders (Hymenoptera: Pteromalidae) were conducted in five organic dairy cattle farms to evaluate the overall effect on parasitism and efficiency at different pupal depths of Musca domestica L. (Diptera: Muscidae). Overall, parasitism increased significantly from 5.3 to 28.8–28.7% of the exposed house fly pupae due to the release of pupal parasitoids. Spalangia cameroni was by far the most dominant species, contributing approximately 71.5–72.3% of the parasitism in the release and post-release period, whereas 20.9–24.4% could be attributed to Muscidifurax raptor. A naturally occurring ichneumonid, Phygadeuon fumator Gravenhorst (Hymenoptera: Ichneumonidae) parasitized 4.1–6.8% of the exposed fly pupae. The placement of house fly pupae at two depths of the bedding, 5–10 and 15–20 cm had no significant effect on overall parasitism whereas M. raptor attacked the house fly pupae significantly more when placed in the 5–10 cm stratum (10.0%) compared to the 15–20 cm stratum (3.2%). The two pupal depths had no significant effect on parasitism by S. cameroni and P. fumator. Albeit S. cameroni contributed significantly to overall parasitism, M. raptor had a significantly higher attack rate when first a female had located bags with sentinel pupae. Based on the above results, however, S. cameroni seems the most appropriate species for managing house flies in straw bedded dairy cattle farms in Denmark. A biological control strategy of simultaneous releases of S. cameroni and M. raptor is discussed.  相似文献   

2.
House flies (Musca domestica L.) and stable flies (Stomoxys calcitrans (L.)) (Diptera: Muscidae) are nuisance pests on livestock farms. In the present study we tested the effect of biweekly mass release of Spalangia cameroni Perkins (Hymenoptera: Pteromalidae), the most common parasitoid of house flies and stable flies in southern Norway, on pig premises with scattered fly breeding sites. The study spanned two successive summer periods, with two control and two release units each year. Spalangia cameroni suppressed both house flies and stable flies in one release unit during the first year, and stable flies in one release unit the second year. The apparent lack of success in fly control in the other release units was likely due to immigration of flies in two of the trials and high temperatures in one trial. Recommendations concerning release of S. cameroni in similar pig production premises are given. Handling editor: Torsten Meiners.  相似文献   

3.
Applications of a commercially produced Beauveria bassiana product, balEnce, were compared with pyrethrin treatments for the control of adult house flies in New York high-rise, caged-layer poultry facilities. An integrated fly management program, which included the release of house fly pupal hymenopteran parasitoids, was used at all facilities. Adult house fly populations were lower in B. bassiana-treated facilities during the spray and post-spray periods, as recorded on spot cards. Concurrently, the numbers of house fly larvae recovered in B. bassiana-treated facilities were less than one-half that of the pyrethrin-treated facilities. House fly pupal parasitism levels were low, but similar under both treatment regimes. The numbers of adult and larval Carcinops pumilio, a predatory beetle, recovered from B. bassiana-treated facilities were 43 and 66% greater than from the pyrethrin-treated facilities, respectively.  相似文献   

4.
Diachasmimorpha longicaudata is a koinobiont larval parasitoid that is currently used to control fruit flies of the genera Anastrepha, Ceratitis and Bactrocera. In the rearing process, a fraction of the host larvae that are exposed to parasitoids escape from parasitism and develop into viable and fertile flies. This creates the need to eliminate emerging flies before the parasitoids are shipped for release, increasing costs due to additional handling steps. Exposure of fly eggs or larvae to gamma-irradiation before they are parasitised has been used to reproductively sterilise hosts, or even inhibit their emergence. Our aim was to determine whether X-ray radiation applied to Anastrepha fraterculus third instar larvae before they are exposed to parasitoids, inhibits fly emergence in non-parasitised larvae without affecting the performance of the parasitoids that emerge from parasitised larvae. Three X-ray doses: 6250.2 R, 8333.6 R and 10417 R (equivalent to 60, 80 and 100 Gy, respectively) and one γ-ray dose (100 Gy) were tested. Fly emergence decreased with increasing doses of radiation, showing null values for the higher X-ray dose and the dose of 100 Gy. Irradiation showed either no impact or a positive effect on parasitism rate and fecundity. Sex rate was biased towards females in almost every dose. We conclude that the two types of radiation evaluated here were equally effective in suppressing fly emergence with no detrimental effects on the biological quality of the produced parasitoids. X-rays offer an alternative method of irradiation than the conventional radiation source, i.e. γ-rays. These results represent a significant improvement in the development of a biological control programme against A. fraterculus.  相似文献   

5.
A survey was conducted on confined dairy cattle farms and a pig farm from May–October in 1999 to determine the activity and relative abundance of pupal parasitoids and the prevalence of entomopathogenic fungi in populations of the haematophagous stable fly, Stomoxys calcitrans (Diptera: Muscidae), in Denmark. Four species of pteromalids were found with Spalangia cameroni as the predominant. The other parasitoids were S. nigripes, S. nigra and Phygadeuon fumator (Ichneumonidae). Peak activity of the parasitoids was observed to be late in the summer and the beginning of autumn (August–September) when approximately 10% of the collected stable fly pupae were parasitised. Adult stable flies were infected with four species of entomopathogenic fungi: Entomophthora muscae, E. schizophorae, Beauveria bassiana and Verticillium lecanii. All fungi occurred in low percentages (max. 4%) and remained at this level throughout the sampling period. Likewise, adult house flies were infected with B. bassiana and V. lecanii,but Metarhizium anisopliae, Paecilomyces fumosoroseus and V. fusisporum were also recorded. The overall hyphomycete prevalence in house flies was 0.3%, and single species rarely exceeded 0.1%. The prevalence remained low in spite of increasing house fly numbers in August–September.  相似文献   

6.
The longevity of male and female Megaselia haltherata, 75% of parasitised by the nematode Howardula husseyi, was studied for 16 days at 20- 21.5 OC. A statistical model fitted to the data indicated that parasitism reduced fly longevity significantly; predicted times to 50% mortality were about 6 days shorter for parasitised males, but only 2 days shorter for parasitised females. An investigation of the number of nematode larvae liberated by female flies at intervals throughout the experiment showed that many had been liberated in the first 4 days, and that the rate of release then gradually declined. A statistical model for nematode dissemination rate was used to estimate the mean number of nematodes released at 4-day intervals by surviving flies containing 1–5 adult H. husseyi. Mass release of laboratory-reared parasitised flies on mushroom farms has been suggested as a possible method of boosting the incidence of parasitism in farm fly populations. The results of the present study indicate that if such a measure were taken in spawn-running rooms then the best effect might be attained by releasing the flies in two batches with one release occurring in the middle of each week of the spawn-run.  相似文献   

7.
ABSTRACT

This study evaluated the potential of two aphelinid parasitoids, Encarsia sophia (Girault & Dodd) and Eretmocerus hayati (Zolnerowich & Rose) to control the sweetpotato whitefly Bemisia tabaci, (Gennadius) using a banker plant system over two consecutive years. The parasitism rates of both parasitoids on a tomato (Solanum lycopersicum L.) crop were determined using melon, Cucumis melo L. (Cucurbitaceae) and castor bean, Ricinus communis L. (Euphorbiaceae), as banker plants, respectively. The emergence rates of Er. hayati and En. sophia parasitoids from parasitised whiteflies on both banker plants exceeded 90% and 85%, respectively, which is 17–20 percentage points higher than that on the pupal card under field cage conditions. Parasitism (%) on banker plants was significantly higher for both parasitoids in the third week after release as compared to adult releases in the first year, reaching 15.2?±?1.3 and 24.0?±?1.4% for En. sophia and Er. hayati, respectively. However, no significant difference in parasitism (%) was observed between banker plant and pupal card release treatments in the second year. The combined release of the two parasitoids during the second year clearly showed a continuous increase in parasitism, which was higher than parasitism in the single parasitoid-release treatments by the 4th week after release. Whitefly populations were significantly lower in all parasitoid-release treatments than in the no-release control by 4–6 weeks into the study period in the second year, while no other significant differences were observed between treatments in either year. This study found that both banker plants efficiently supported populations of both parasitoids and improved their emergence compared to the pupal card.  相似文献   

8.
Pearl millet is one of the major staple food crops in Sub-Sahelian Africa, and the millet head miner (MHM) [Heliocheilus albipunctella] is its major pest, causing serious economic damage in the maturity period. We studied the dispersion patterns of the endogenous ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae), after augmentative releases in pearl millet fields for biological control of the MHM, in 2010 and 2011 in Burkina Faso and Niger. The parasitoids were released using 15 jute bags per release site. Parasitoid dispersion was indirectly monitored through weekly assessments of MHM parasitism by H. hebetor at different distances from release points (0, 3 and 5?km) and in control villages (15?km). Our findings indicate that the jute bags released approximately 900–1000 parasitoids per site over a period of three weeks. This initial parasitoid population led to higher parasitism of MHM larvae at the site of dissemination compared to farms at distances of 3 and 5?km. However, usually after five weeks, successive generations of H. hebetor dispersed up to 3?km, causing high levels of MHM larval mortality, which sometimes is similar to those of the release points. Based on these results, we recommend the release of parasitoids at sites spaced 3?km for timely and more efficient control of MHM populations.  相似文献   

9.
Assays of five commercial insecticides applied as residual sprays at label rates to plywood indicated the most toxic insecticide overall for pteromalid parasitoids of house flies, Musca domestica L., was Atroban (permethrin), followed by Ciodrin (crotoxyphos), Rabon (tetrachlorvinphos), Ectrin (fenvalerate), and Cygon (dimethoate). Insecticide-susceptible house flies were susceptible to all five insecticides (mortality, 62-100%). Flies that were recently colonized from populations on dairy farms in New York were susceptible only to Rabon. Urolepis rufipes (Ashmead) was the most susceptible parasitoid species overall to these insecticides, followed by Muscidifurax raptor Girault & Sanders, Nasonia vitripennis Walker, Pachycrepoideus vindemmiae (Rondani), and Spalangia cameroni Perkins. Compared with susceptible flies, newly colonized flies showed moderate resistance to avermectin B1a (abamectin). Abamectin was more toxic to all of the parasitoids except N. vitripennis and S. cameroni than to newly colonized house flies when exposed for 90 min to plywood boards treated with 0.001-0.1% abamectin. Space sprays with Vapona (dichlorvos) killed all of the parasitoids and susceptible flies and 64% of the newly colonized flies when insects were placed directly in the path of the spray; mortality was substantially lower among flies and parasitoids protected under 5 cm of wheat straw. Space sprays with Pyrenone (pyrethrins) killed greater than 86% of all insects exposed to the spray path except for the newly colonized flies (1% mortality); mortality of insects protected under straw was low (less than 12%) except for S. cameroni (76%). Because responses of the five parasitoids to the different insecticides varied considerably, general conclusions about parasitoid susceptibility to active ingredients, insecticide class, or method of application were not possible.  相似文献   

10.
Biological control is a relatively benign method of pest control. However, considerable debate exists over whether multiple natural enemies often interact to produce additive or non‐additive effects on their prey or host populations. Based on the large data set stored in the São João and Barra sugarcane mills (state of São Paulo, Brazil) regarding the programme of biological control of Diatraea saccharalis using the parasitoids Cotesia flavipes and tachinid flies, in the present study the author investigated whether the parasitoids released into sugarcane fields interfered significantly with the rate of parasitized D. saccharalis hosts. The author also observed whether there was an additive effect of releasing C. flavipes and tachinids on the rate of parasitized hosts, and looked for evidence of possible negative effects of the use of multiple parasitoid species in this biological control programme. Results showed that C. flavipes and the tachinids were concomitantly released in the Barra Mill, but not in the São Jão Mill. Furthermore, in the Barra Mill there was evidence that the parasitoids interacted because the percentage of parasitism did not increase after the release of either C. flavipes or tachinids. In the São João Mill, when both parasitoid species were released out of synchrony, both the percentage of parasitism by C. flavipes as well as that of the tachinids increased. When large numbers of tachinids were released in the Barra Mill, they caused a significant lower percentage of parasitism imposed by C. flavipes. The implications of the results as evidence of non‐additive effects of C. flavipes plus tachinids on D. saccharalis populations are discussed.  相似文献   

11.
Seasonal relationships among stranded wrack quantity, seaweed fly abundances, and parasitism at the pupal stage were studied along three sandy beaches in central Japan. The seasonal occurrence patterns of puparia of seaweed flies Coelopa frigida and Fucellia spp. generally corresponded to seaweed deposition, which peaked in May–July and October–December. Parasitoids use fly puparia in these seasons. However, the occurrence of seaweed flies and their parasitoids varied among the three sandy beaches and did not correspond to the wrack amounts. These findings suggest that populations of seaweed flies and their parasitoids are seasonally, but not spatially, regulated by bottom‐up processes. The parasitoid assemblage of fly puparia was composed of two Aleochara (Coleoptera: Staphylinidae), two Trichopria (Hymenoptera: Diapriidae), and five pteromalid species (Hymenoptera), but the rate of parasitism was less than 20% and might have had little effect on fly populations.  相似文献   

12.
Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) is used as a biological control agent against house flies and stable flies in livestock farms in Northern Europe. In the present study, the juvenile development, survival, and sex ratio of one Danish and one Norwegian population of S. cameroni were investigated at 15, 20, 25, 30, and 35°C to determine the best adapted strain for release programs. The Danish population developed 50 days faster at 15°C, whereas the Norwegian developed 3–4 days faster at 25°C. The difference was smaller at 20°C and 30°C. Only a few Danish female parasitoids emerged at 35°C. Both populations required 381 degree days to complete development and exhibited optimal juvenile survival at 23.7°C. The Norwegian population produced more females than the Danish population at all temperatures (average of 67.5% vs. 55.5%, respectively). The overall differences between the populations were small, but might still be important for inundative release programs.  相似文献   

13.
Augmentative biological control of whiteflies using transplants   总被引:1,自引:0,他引:1  
Field studies showed that transplants can be used to move parasitoids into fields of commercially grown cantaloupe, Cucumis melo (Cucurbitaceae), and augment parasitism of sweet potato whitefly, Bemisia tabaci biotype B (= Bemisia argentifolii) (Homoptera: Aleyrodidae). Methods were developed to inoculate cantaloupe seedlings with newly imported Eretmocerus spp. (Hymenoptera: Aphelinidae), then transfer plants into both organic and conventional fields of cantaloupe in the desert growing region of southeastern California. Several obstacles to inoculating banker plants with an adequate number of parasitized whiteflies were overcome and numbers of parasitoids per transplant increased. In 1999 the use of banker plants was compared to a standard hand-release method and a no-release control in a replicated study at an organic farm. Augmentation through releases of parasitoids increased parasitism over that in the no-release controls (p <0.05). Banker plants increased the proportion of parasitized whiteflies more than the hand-release method (0.21 vs. 0.08). During a region-wide demonstration spring 2000, plots receiving banker plants significantly increased parasitism over paired control plots at seven commercial farms of cantaloupe. Parasitism in banker plant treated plots in 2000 was higher in organic fields (seasonal average =0.30) than conventional ones (seasonal average =0.06). Differences may be due to the use of imidacloprid, a systemic insecticide, in conventional fields for whitefly control. Over the 2-year study, however, releases of parasitoids did not consistently reduce densities of B. tabaci. Only in late season at some sites in 2000 were whitefly densities lower in release plots than paired controls. Most of the parasitoids recovered and identified from plots receiving parasitoids were the same as those released, Eretmocerus spp. (ex. Ethiopia M96076), and E. hayati(M95012, ex. Pakistan).  相似文献   

14.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest of maize in North and South America. It was first reported from Africa in 2016 and currently established as a major invasive pest of maize. A survey was conducted to explore for natural enemies of the fall armyworm in Ethiopia, Kenya and Tanzania in 2017. Smallholder maize farms were randomly selected and surveyed in the three countries. Five different species of parasitoids were recovered from fall armyworm eggs and larvae, including four within the Hymenoptera and one Dipteran. These species are new associations with FAW and were never reported before from Africa, North and South America. In Ethiopia, Cotesia icipe was the dominant larval parasitoid with parasitism ranging from 33.8% to 45.3%, while in Kenya, the tachinid fly, Palexorista zonata, was the primary parasitoid with 12.5% parasitism. Charops ater and Coccygidium luteum were the most common parasitoids in Kenya and Tanzania with parasitism ranging from 6 to 12%, and 4 to 8.3%, respectively. Although fall armyworm has rapidly spread throughout these three countries, we were encouraged to see a reasonable level of biological control in place. This study is of paramount importance in designing a biological control program for fall armyworm, either through conservation of native natural enemies or augmentative release.  相似文献   

15.
An overwintering population of the mushroom phorid fly Megaselia halterata parasitized by Howardula husseyi was studied in an attempt to explain the winter decline in incidence of parasitism that has been observed in flies from mushroom farms. Fly larvae from eggs hatching in November developed into pupae in December and flies emerged in May. No selective mortality of parasitized specimens of larvae, pupae, or flies was observed. Dead parasites were found in only 10% of parasitized flies. The incidence of parasitism in the emerging flies (50%) was five times that of their parental generation and although parasitism significantly delayed fly emergence the delay was only 2–3 days. There was no evidence of winter decline in parasitism; instead there was strong evidence that parasitism enhanced phorid survival through the winter.  相似文献   

16.
At 21 °C,Spalangia nigra Latreille (Hymenoptera: Pteromalidae) averaged 29.3 days between exposure and emergence of 1st progeny from host house flies,Musca domestica L. (Diptera: Muscidae). At 27 °C, the average developmental time to 1st emergence was reduced to 26.6 days, and a majority of adult wasps emerged from host house fly puparia between 29 and 40 days postoviposition. The sex ratio of progeny ranged from 1.4 to 1.8 female-to-male, but all progeny of virgin females were male. Male wasps lived from 6.8–15 and females 11–17.8 days at 27 °C; honey as a food source increased longevity. No significant differences in parasitism byS. nigra were associated with host house fly pupal densities ranging from 1 to 200 pupae per female-male pair of wasps, but average percent parasitism decreased at host densities greater than 50. House fly pupae exposed to parasitism at ages ranging from 4 to 96 h did not differ in subsequent production of adult flies.S. nigra did not demonstrate preference for house flies or stable flies,Stomoxys calcitrans (L.) (Diptera: Muscidae) as hosts. The results of these studies indicate thatS. nigra may contribute significantly to previously unexplained mortality of house flies and stable flies.   相似文献   

17.
Commercially reared parasitoids were released into three high-rise, caged-layer poultry houses; one house received only N. vitripennis Walker, the second house received only M. raptorellus Kogan & Legner, and the third house received an equal ratio of both species. Overall, house fly parasitism by M. raptorellus was never higher than 7% in any house. Most parasitism in the M. raptorellus release house was attributed to N. vitripennis. Parasitism of house fly pupae by M. raptorellus did not significantly increase during or after the 6-wk release period in the house that received both parasitoids. However, a depression in total parasitism was not detected when releases of the two species were made in this house.  相似文献   

18.
The larval–pupal endoparasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is currently the most commonly employed biological control agent against Tephritid fruit flies in the Americas. However, this parasitoid remains largely ignored and is not used in many regions, including the Mediterranean Basin. In this study, the potential of D. longicaudata as a biocontrol agent against the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae) was addressed in an area of eastern Spain (the Valencian community). The parasitic activity of parasitoids and the effects of climatic conditions were evaluated throughout a 1‐year period in field‐cage experiments in which parasitoids were confined with apples artificially infested with medfly larvae. The following parameters were calculated and related statistically to several environmental conditions: the parasitism rate, the induced mortality and progeny sex ratio. The results show that D. longicaudata is able to parasitize medfly larvae throughout the year under semi‐natural conditions. Important fluctuations in the parasitism rate (from almost zero to 42%) and the induced mortality (from 6% to 80%) were partially influenced by climatic conditions. The parasitism rate increased with mean temperature and decreased with mean relative humidity, while the induced mortality decreased with minimum relative humidity. The optimal climatic conditions for the activity of the parasitoid were a mean temperature of 16–24°C combined with a relative humidity of 45%–60%. Overall, these results suggest that reduction in the medfly population due to D. longicaudata activity is feasible and provide information about the optimal time period for parasitoid release in the field. In conclusion, D. longicaudata has a significant potential to control C. capitata in the Mediterranean region.  相似文献   

19.
Muscidifurax zaraptor Kogan and Legner (Hymenoptera: Pteromalidae) was released at three rates in nine beef cattle feedlots in eastern Nebraska to measure dosage response. Dosage response was measured by the percentage parasitism of sentinel house fly pupae. Releases were made from a single location near the center of the pen at three feedlots, from two locations within the pen at three feedlots, and from four corners of the pen at three feedlots. One-time releases initiated held propagation of M. zaraptor using freeze-killed house fly pupae as hosts. Three treatment rates, averaging 4480, 20,300, and 37,100 parasitoids, were released weekly over a 15-week period with each of the three release methods receiving a low, medium, or high treatment rate. All nine release sites produced significantly higher levels of parasitoid emergence and sentinel host mortality than sentinel hosts at two control facilities. The three sites receiving the high treatment rate averaged 38% host mortality, compared with 26% for the medium treatment rate and 17% for the low treatment rate. The two control sites averaged 2% host mortality. No significant differences could be detected in the number of release stations except at the four-station method using the low treatment rate. High temperatures during at least two of the weekly periods were detrimental to the released parasitoids.  相似文献   

20.
Diachasmimorpha longicaudata (Ashmead) parasitoids were released by air on a weekly basis over 1600 ha of commercial mango orchards, backyard orchards, and patches of native vegetation, at a density of ca. 940 parasitoids/ha. Releases were made during 2 consecutive years, beginning at flower onset and lasting until the end of the production cycle. Two areas, 7 km apart, were compared. In one area parasitoids were released, whereas the other area was used as a control. During the 2nd year treatments were reversed. Fruit was sampled in commercial mango orchards and in backyard orchards to assess levels of parasitism in fruit fly larvae. Highly significant differences in percentage parasitism were found in release and control zones in backyard orchards. Furthermore, trapping results indicated that D. longicaudata releases were associated with ca. 2.7-fold suppression of Anastrepha spp. populations in backyard orchards. Results suggest that suppression might be affected by environmental conditions and by the parasitoid:fly ratio achieved. Anastrepha obliqua McQuart populations were suppressed more effectively by use of parasitoids than those of Anastrepha ludens Loew, perhaps due to the type of host fruits used by each species. Augmentative parasitoid releases in marginal areas surrounding commercial orchards (backyard orchards, wild vegetation) can substantially suppress fly populations. Through this approach, the number of flies that later move into commercial orchards can be significantly reduced. Such a strategy, when combined with sound orchard management schemes, can allow growers to produce clean fruit without the need to resort to the widespread use of insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号