共查询到20条相似文献,搜索用时 0 毫秒
1.
Interactions between Wnt and Vg1 signalling pathways initiate primitive streak formation in the chick embryo 总被引:1,自引:0,他引:1
The posterior marginal zone (PMZ) of the chick embryo has Nieuwkoop centre-like properties: when transplanted to another part of the marginal zone, it induces a complete embryonic axis, without making a cellular contribution to the induced structures. However, when the PMZ is removed, the embryo can initiate axis formation from another part of the remaining marginal zone. Chick Vg1 can mimic the axis-inducing ability of the PMZ, but only when misexpressed somewhere within the marginal zone. We have investigated the properties that define the marginal zone as a distinct region. We show that the competence of the marginal zone to initiate ectopic primitive streak formation in response to cVg1 is dependent on Wnt activity. First, within the Wnt family, only Wnt8C is expressed in the marginal zone, in a gradient decreasing from posterior to anterior. Second, misexpression of Wnt1 in the area pellucida enables this region to form a primitive streak in response to cVg1. Third, the Wnt antagonists Crescent and Dkk-1 block the primitive streak-inducing ability of cVg1 in the marginal zone. These findings suggest that Wnt activity defines the marginal zone and allows cVg1 to induce an axis. We also present data suggesting some additional complexity: first, the Vg1 and Wnt pathways appear to regulate the expression of downstream components of each other's pathway; and second, misexpression of different Wnt antagonists suggests that different classes of Wnts may cooperate with each other to regulate axis formation in the normal embryo. 相似文献
2.
Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein 总被引:1,自引:0,他引:1
Angiogenesis, the formation of new blood vessels from pre-existing vessels, is critical to most physiological processes and many pathological conditions. During zebrafish development, angiogenesis expands the axial vessels into a complex vascular network that is necessary for efficient oxygen delivery. Although the dorsal aorta and the axial vein are spatially juxtaposed, the initial angiogenic sprouts from these vessels extend in opposite directions, indicating that distinct cues may regulate angiogenesis of the axial vessels. We found that angiogenic sprouts from the dorsal aorta are dependent on vascular endothelial growth factor A (Vegf-A) signalling, and do not respond to bone morphogenetic protein (Bmp) signals. In contrast, sprouts from the axial vein are regulated by Bmp signalling independently of Vegf-A signals, indicating that Bmp is a vein-specific angiogenic cue during early vascular development. Our results support a paradigm whereby different signals regulate distinct programmes of sprouting angiogenesis from the axial vein and dorsal aorta, and indicate that signalling heterogeneity contributes to the complexity of vascular networks. 相似文献
3.
Two distinct regions of FC gamma RI initiate separate signalling pathways involved in endocytosis and phagocytosis. 下载免费PDF全文
Cross-linking of the high affinity receptor for IgG, Fc gamma RI, can result in both endocytosis of immune complexes and phagocytosis of opsonized particles in myeloid cells, although the cytoplasmic domain of the receptor lacks the tyrosine activation motif which has been implicated in signal transduction triggered by cross-linking of other Fc receptors. To identify the structural determinants of Fc gamma RI-mediated ligand internalization, we have expressed Fc gamma RI or truncated versions of Fc gamma RI in COS cells, either alone or in the presence of the Fc epsilon RI gamma subunit (which contains a classical tyrosine activation motif and associates with Fc gamma RI in myeloid cells), and assessed their ability to mediate endocytosis and phagocytosis. We have found that Fc gamma RI alone (in the absence of the gamma subunit) is capable of mediating endocytosis in COS cells and that the process occurs via a novel, tyrosine kinase-independent signalling pathway. Activation of this pathway following cross-linking appears to require only the receptor extracellular domain. In contrast, Fc gamma RI phagocytic function in COS cells is dependent on an interaction between the receptor transmembrane domain and the gamma subunit and is mediated by recruitment of tyrosine kinase activity. Our data therefore indicate that distinct domains of the receptor regulate ligand internalization following receptor cross-linking by either immune complexes (endocytosis) or opsonized particles (phagocytosis) and that these functions are mediated by different intracellular signalling pathways. 相似文献
4.
The role of ras oncogenes in cellular signalling pathways involving phospholipid breakdown was studied in untransfected and proto-H-ras and mutated H-, K- and N-ras transfected NIH/3T3 cells. When the cells were grown at low cell densities, all of the ras transfected cells had 2-4 fold higher diacylglycerol (DAG) levels compared to growing NIH/3T3 cells. At high cell densities, DAG levels decreased in the former and increased in contact inhibited NIH/3T3 cells. In this regard, only cells transformed by mutated cellular and viral H-ras oncogenes (but not by the H-ras proto-oncogene) had elevated DAG levels compared to contact inhibited NIH/3T3 cells. The basal levels of inositol phosphates in ras transfected cells were not significantly different from NIH/3T3 cells and did not vary with cell density. Thus, the elevated DAG levels are not a consequence of increased phosphoinositide hydrolysis. The latter was stimulated by serum and bombesin only in normal and proto-H-ras transfected cells. In contrast, stimulation by bradykinin was observed only in cells transformed by mutated cellular ras oncogenes. Furthermore, aluminum fluoride stimulated phosphoinositide breakdown in the latter cells indicating that there was no uncoupling of the G protein from phospholipase C. Treatment of ras transfected cells with dibutyryl cyclic AMP (DB-cAMP), which causes an inhibition of growth and a reversal of the transformed morphology, did not alter the basal levels of inositol phosphates, DB-cAMP, however, did lower DAG levels in some of the transformed cell lines, but elevated DAG levels in low density NIH/3T3 cells. These findings indicate that the ras gene product p21 is not involved in phosphoinositide hydrolysis and that DAG levels do not correlate with cell growth in either normal or ras transfected NIH/3T3 cells. Thus, p21 appears to alter cell growth through mechanism(s) independent of lipid signalling pathways. 相似文献
5.
Notch signalling is a key pathway controlling angiogenesis in normal tissues and tumours. This has become a major focus of development of anticancer therapy, but to develop this appropriately, we need further understanding of the mechanisms of regulation of Dll4 (Delta-like ligand 4), a key endothelial Notch ligand. Dll4 and VEGF (vascular endothelial growth factor) cross-talk, with VEGF up-regulation of Dll4 and Dll4 down-regulating VEGFR (VEGF receptor) signalling. Both are essential for normal angiogenesis, and blockade of one may produce compensatory changes in the other. The present review considers recent developments in the regulation of Dll4 expression and functions, its role as a mechanism of resistance to anti-angiogenic therapy, and methods needed to develop effective therapy against this target. 相似文献
6.
Cancer genes and the pathways they control 总被引:31,自引:0,他引:31
The revolution in cancer research can be summed up in a single sentence: cancer is, in essence, a genetic disease. In the last decade, many important genes responsible for the genesis of various cancers have been discovered, their mutations precisely identified, and the pathways through which they act characterized. The purposes of this review are to highlight examples of progress in these areas, indicate where knowledge is scarce and point out fertile grounds for future investigation. 相似文献
7.
Chemokines are a superfamily of structurally homologous heparin-binding proteins that influence tumor growth and metastasis. Several members of the CXC and CC chemokine families are potent inducers of neovascularization, whereas a subset of the CXC chemokines are potent inhibitors. In this paper, we review the current literature regarding the role of chemokines as mediators of tumor angiogenesis and neovascularization. 相似文献
8.
Lipid rafts are specialized structures on the plasma membrane that have an altered lipid composition as well as links to the cytoskeleton. It has been proposed that these structures are membrane domains in which neurotransmitter signalling might occur through a clustering of receptors and components of receptor-activated signalling cascades. The localization of these proteins in lipid rafts, which is affected by the cytoskeleton, also influences the potency and efficacy of neurotransmitter receptors and transporters. The effect of lipid rafts on neurotransmitter signalling has also been implicated in neurological and psychiatric diseases. 相似文献
9.
Clarke JH 《Current biology : CB》2003,13(20):R815-R817
Many physiological targets have been suggested for polyphosphoinositol lipids, but two out of the three monophosphorylated PIPs appeared to be no more than metabolic precursors. Recent work has shown that they also have distinct binding proteins and functions. 相似文献
10.
11.
Dissection and manipulation of metabolic signalling pathways 总被引:2,自引:0,他引:2
N G HALFORD SANDRA HEY D JHURREEA S LAURIE R S MCKIBBIN Y ZHANG M J PAUL 《The Annals of applied biology》2003,142(1):25-31
The partitioning of resources between different plant organs and compounds is an important determinant of crop quality. We are attempting to change resource partitioning in crop plants by manipulating the cellular mechanisms involved in metabolite sensing and signalling. One of the proteins involved is SnRK1 (sucrose nonfermenting‐1‐related protein kinase 1), so‐called because of its homology and functional similarity with sucrose non‐fermenting 1 (SNF1) of yeast. SnRK1 is a protein kinase that plays a key role in the global control of plant carbon metabolism. Here we review studies on the characterisation of SnRK1 gene families, SnRK1 regulation and function, and the identification of SnRK1‐interacting proteins. We also describe some potential applications of manipulating SnRK1 activity, including controlling sprouting in stored potato tubers, inducing male sterility in barley and increasing sterol levels in oilseeds. 相似文献
12.
《Journal of Free Radicals in Biology & Medicine》1986,2(3):219-225
The inhalation of SO2 or the ingestion of beverages or food containing sulfite as a preservative has been associated with exacerbations of obstructive pulmonary disease. In this study it is demonstrated that 15-HPETE, a likely component of the lung's inflammatory response, can initiate the autoxidation of sulfite. Since 1 mol of 15-HPETE can initiate the consumption of 3 mol of oxygen and 6 mol of sulfite, it is likely that a free radical chain mechanism is operative. Direct evidence for the production of relatively small quantities of Superoxide and indirect evidence for the production of lipid sulfonates are presented. It is possible that an intermediate free radical or product (as lipid sulfonate) is involved in the bronchospastic response to inhaled SO2. 相似文献
13.
PURPOSE OF REVIEW: The response to injury model in the development of atherosclerosis is broadly accepted by the scientific audience. Platelets are generally not believed to be involved in the initiation of atherosclerosis. New data imply, however, that the response to injury model is too simple for a complete understanding of the inflammatory disease atherosclerosis. The involvement of platelets in the initiation of atherosclerotic lesion formation is critical in directing the atherosclerotic process into regeneration or ongoing vascular injury. RECENT FINDINGS: Platelets internalize oxidized phospholipids and promote foam cell formation. Platelets also recruit circulating blood cells including progenitor cells to the vessel, that are able to differentiate into foam cells or endothelial cells depending on conditions. Platelets express various scavenger receptors that are able to regulate LDL-uptake. LDL-laden platelets are internalized by adherent progenitor cells that in turn differentiate into macrophages and foam cells. SUMMARY: An expanding body of evidence continues to build on the role of platelets as initial actors in the development of atherosclerotic lesions. Platelets bind to leukocytes, endothelial cells, and circulating progenitor cells and initiate monocyte transformation into macrophages. Therefore platelets regulate the initiation, development and total extent of atherosclerotic lesions. 相似文献
14.
Cook LB Delorme-Axford EB Robinson K 《Biochemical and biophysical research communications》2008,375(4):592-595
The melanin-concentrating hormone receptor (MCHR) 1 is a G protein-coupled receptor involved in the regulation of appetite and energy expenditure in mammals. Here, we show that MCHR1 partitions to lipid rafts in stably expressing Chinese hamster ovary cells. In addition to co-fractionating with lipid rafts containing caveolin-1 on sucrose gradients, caveolin-1 was present in MCHR1 immunoprecipitates, suggesting that MCHR1 complexes with caveolae. The cholesterol-depleting drug methyl-β-cyclodextrin impaired MCH-mediated ERK signaling. These data suggest that a functional interaction between MCHR1 and caveolin-1 in lipid rafts exists and provide a basis for further biochemical studies to understand the significance on MCH-mediated signal transduction events. 相似文献
15.
Physicochemical modelling of signal transduction links fundamental chemical and physical principles, prior knowledge about regulatory pathways, and experimental data of various types to create powerful tools for formalizing and extending traditional molecular and cellular biology. 相似文献
16.
17.
18.
Ross EM 《Current biology : CB》1992,2(10):517-519
19.
CDPK-mediated signalling pathways: specificity and cross-talk 总被引:17,自引:0,他引:17
Plants are constantly exposed to environmental changes and have to integrate a variety of biotic and abiotic stress stimuli. Calcium-dependent protein kinases (CDPKs) are implicated as important sensors of Ca2+ flux in plants in response to these stresses. CDPKs are encoded by multigene families, and expression levels of these genes are spatially and temporally controlled throughout development. In addition, a subset of CDPK genes responds to external stimuli. Biochemical evidence supports the idea that CDPKs are involved in signal transduction during stress conditions. Furthermore, loss-of-function and gain-of-function studies revealed that signalling pathways leading to cold, salt, drought or pathogen resistance are mediated by specific CDPK isoforms 相似文献