首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In the humid tropics of SE Asia there are some 14 myrmecophytic species of the pioneer tree genus Macaranga (Euphorbiaceae). In Peninsular Malaysia a close association exists between the trees and the small, non-stinging myrmicine Crematogaster borneensis. These ants feed mainly on food bodies provided by the plants and have their colonies inside the hollow internodes. In a ten months field study we were able to demonstrate for four Macaranga species (M. triloba, M. hypoleuca, M. hosei, M. hulletti) that host plants also benefit considerably from ant-occupation. Ants do not contribute to the nutrient demands of their host plant, they do, however, protect it against herbivores and plant competition. Cleaning behaviour of the ants results in the removal of potential hervivores already in their earliest developmental stages. Strong aggressiveness and a mass recruiting system enable the ants to defend the host plant against many herbivorous insects. This results in a significant decrease in leaf damage due to herbivores on ant-occupied compared to ant-free myrmecophytes as well as compared to non-myrmecophytic Macaranga species. Most important is the ants' defense of the host plant against plant competitors, especially vines, which are abundant in the well-lit pioneer habitats where Macaranga grows. Ants bite off any foreign plant part coming into contact with their host plant. Both ant-free myrmecophytes and non-myrmecophytic Macaranga species had a significantly higher incidence of vine growth than specimens with active ant colonies. This may be a factor of considerable importance allowing Macaranga plants to grow at sites of strongest competition.  相似文献   

2.
In this study, we conducted a series of experiments in a population of Vachellia constricta (Fabaceae) in the arid Tehuacan-Cuicatláan valley, Mexico, in order to evaluate if the food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions. Using an experiment with artificial nectaries, we observed that ants foraging on food sources with higher concentration of sugar are quicker in finding and attacking potential herbivorous insects. More specifically, we found that the same ant species may increase their defence effectiveness according to the quality of food available. These findings indicate that ant effectiveness in plant protection is context-dependent and may vary according to specific individual characteristics of plants. In addition, we showed that competitively superior ant species tend to dominate plants in periods with high nectar activity, emphasizing the role of the dominance hierarchy structuring ant-plant interactions. However, when high sugar food sources were experimentally available ad libitum, the nocturnal and competitively superior ant species, Camponotus atriceps, did not dominate the artificial nectaries during the day possibly due to limitation of its thermal tolerance. Therefore, temporal niche partitioning may be allowing the coexistence of two dominant ant species (Camponotus rubritorax during the day and C. atriceps at night) on V. constricta. Our findings indicate that the quality of the food source, and temporal shifts in ant dominance are key factors which structure the biotic plant defences in an arid environment.  相似文献   

3.
Summary The hypothesis that ants (Pheidole minutula) associated with the myrmecophytic melastome Maieta guianensis defend their host-plant against herbivores was investigated in a site near Manaus, Amazonas, Brazil. M. guianensis is a small shrub that produces leaf pouches as ant domatia. Plants whose ants were experimentally removed suffered a significant increase in leaf damage compared with control plants (ants maintained). Ants patrol the young and mature leaves of Maieta with the same intensity, presumably since leaves of both ages are equally susceptible to herbivore attack. The elimination of the associated ant colony, and consequent increase in herbivory, resulted in reduced plant fitness. Fruit production was 45 times greater in plants with ants than in plants without ants 1 year after ant removal.  相似文献   

4.
Frederickson ME 《Oecologia》2005,143(3):387-395
The dynamics of mutualistic interactions involving more than a single pair of species depend on the relative costs and benefits of interaction among alternative partners. The neotropical myrmecophytes Cordia nodosa and Duroia hirsuta associate with several species of obligately symbiotic ants. I compared the ant partners of Cordia and Duroia with respect to two benefits known to be important in ant-myrmecophyte interactions: protection against herbivores provided by ants, and protection against encroaching vegetation provided by ants. Azteca spp., Myrmelachista schumanni, and Allomerus octoarticulatus demerarae ants all provide the leaves of Cordia and Duroia some protection against herbivores. However, Azteca and Allomerus provide more protection than does Myrmelachista to the leaves of their host plants. Although Allomerus protects the leaves of its hosts, plants occupied by Allomerus suffer more attacks by herbivores to their stems than do plants occupied by other ants. Relative to Azteca or Allomerus, Myrmelachista ants provide better protection against encroaching vegetation, increasing canopy openness over their host plants. These differences in benefits among the ant partners of Cordia and Duroia are reflected in the effect of each ant species on host plant size, growth rate, and reproduction. The results of this study show how mutualistic ant partners can differ with respect to both the magnitude and type of benefits they provide to the same species of myrmecophytic host.  相似文献   

5.
The ants Pheidole minutula and Crematogaster sp. are obligate inhabitants of the ant-plant Maieta guianensis. They nest and reproduce exclusively in this and a few other Amazon melastome ant-plants. Experimental transplants of uncolonized M. guianensis seedlings to sites at different distances from established colonies of these two ant species, which are sources of founding queens, have shown that distance is an important factor affecting seedling colonization by ants. The proportion of colonized seedlings and the average number of colonizations per seedling, both by Crematogaster sp. and P. minutula, decreased as distance from established colonies increased. Seedling colonization was also affected by rainfall and fewer seedlings were colonized during the dry season, especially by P. minutula, than during the rainy season. P. minutula queens usually cooperate with each other during colony foundation, a behaviour not observed among founding queens of Crematogaster sp. Competition between these two ant species for host-plants appears to be strong as 63.6% of the seedlings colonized by Crematogaster sp. were also colonized by P. minutula during a 15-month observational period. However, there was generally an interval of a few months between colonizations, possibly giving the first species to colonize the plant a better chance of domination on this plant.  相似文献   

6.
Fire is one of the main natural disturbances in Tropical Savannas, changing the diversity of species, altering the structure of species interactions, and driving the evolution of adaptations. Here, we investigated the effects of fire disturbance on interactions between ants and plants with extrafloral nectaries in Cerrado (Brazilian Savanna). We carried out the study in two different ecosystems of Brazilian Cerrado 700 km apart; Woody Cerrado and Rupestrian Grasslands. We conducted a Before-After-Control-Impact (BACI) experiment, in which the impact was the disturbance caused by fire. In Woody Cerrado, we found no evidence of fire affecting the diversity and composition of plants or its interactions. Fire also did not affect ant diversity but changed the interaction pattern of its interactions by reorganizing the paired interactions between species (i.e., rewiring). However, this effect did not result in changes on the overall structure of the network. In Rupestrian Grasslands, fire also did not affect the diversity and composition of plant species or its interactions, but it did increase the number of ant species and change its composition, leading to a reorganization of the its paired interactions. However, these fire disturbances in the ant level did not affect the overall structure of the network. Our findings indicate that the structure of ant-plant interaction networks is robust to fire disturbances, more in Woody Cerrado than Rupestrian Grasslands, confirming our hypothesis that ant-plant interactions in Cerrado are adapted to fire disturbances. In sum, our study enhances the understanding of the effects of environmental disturbances and the stability of the ant-plant interactions in fire-adapted ecosystems such as Brazilian Cerrado.  相似文献   

7.
Frederickson ME 《Oecologia》2006,149(3):418-427
In saturated tropical ant assemblages, reproductive success depends on queens locating and competing for scarce nest sites. Little is known about how this process shapes the life histories of tropical ants. Here I investigate the relationship between nest site availability and an important life history trait, reproductive phenology, in the common Amazonian ant species Allomerus octoarticulatus. A. octoarticulatus is a plant-ant that nests in the hollow, swollen stem domatia on Cordia nodosa. I provide evidence that nest sites are limiting for A. octoarticulatus. Most queens produced by A. octoarticulatus colonies died before locating suitable host plants, and most queens that located hosts died before founding colonies, probably from intraspecific competition among queens for control of host plants. I further show that the reproductive phenology of A. octoarticulatus closely matches the seasonal availability of its nest sites, domatia-bearing C. nodosa saplings. Both the production and flight of A. octoarticulatus reproductives, and the number of C. nodosa saplings available for colonization by ants, peaked from March to May. There was correlative evidence that A. octoarticulatus colonies use temperature as a cue to synchronize their reproduction to the availability of C. nodosa saplings: both the production of reproductives by ant colonies and the number of C. nodosa saplings available for colonization were correlated with temperature, and not with rainfall. All of these results suggest that nest site limitation constrains the reproductive phenology of A. octoarticulatus.  相似文献   

8.
In this study, we demonstrate that an important benefit provided by the small host-specific ant Petalomyrmex phylax to its host plant Leonardoxa africana is efficient protection against herbivores. We estimate that in the absence of ants, insect herbivory would reduce the leaf area by about one-third. This contributes considerably to the fitness of the plant. Our estimates take into account not only direct damage, such as removal of leaf surface by chewing insects, but also the effects of sucking insects on leaf growth and expansion. Sucking insects are numerically predominant in this system, and the hitherto cryptic effects of ant protection against the growth-reducing effects of sucking insects accounted for half of the total estimated benefit of ant protection. We propose that the small size of workers confers a distinct advantage in this system. Assuming that resource limitation implies a trade off between size and number of ants, and given the small size of phytophagous insects that attack Leonardoxa, we conclude that fine-grained patrolling by a large number of small workers maximises protection of young leaves of this plant. Since herbivores are small and must complete their development on the young leaves of Leonardoxa, and since a high patrolling density is required for a fine-grained search for these enemies, numerous small ants should provide the most effective protection of young leaves of Leonardoxa. We also discuss other factors that may have influenced worker size in this ant. Received: 1 September 1996 / Accepted: 2 June 1997  相似文献   

9.
A tree species, Macaranga bancana , distributed in South East Asian tropics has a mutualistic relationship with specific symbiotic ant species, which defend the plant from herbivores. To examine the intraspecific variation in the status of the ant-plant symbiosis among microhabitats of different light conditions, we investigated the species composition of nesting ants and the herbivory damage on M. bancana saplings by field observations and sampling in primary and secondary forests in Sarawak. In addition, the effectiveness of non-ant (physical and chemical) defenses were estimated by feeding the larvae of a polyphagous lepidopteran with M. bancana leaves from saplings in the two types of forests. All saplings in the primary forest were colonized by two Crematogaster ant species that had been known to be the obligate symbionts of M. bancana, while in the secondary forest, about half of the saplings were occupied by several ant species that were not obligate symbionts. There was little herbivory damage on saplings colonized by the two Crematogaster symbiont ants in both forest types, while the saplings colonized by the other ant species suffered a 10–60% loss of leaf area. Larval mortality of the polyphagous lepidopteran Spodoptera litura was significantly higher when larvae fed on leaves of M. bancana saplings in the secondary forest than when fed on leaves of M. bancana saplings in the primary forest. These results suggest that the symbiosis between ants and M. bancana is looser and the non-ant-defenses are stronger in secondary forests, where light is more intense, than in primary forests.  相似文献   

10.
Summary The effect of defence force size in colonies of the ant Azteca muelleri on the time spent to localize, attack and expel the specialized herbivorous beetle Coelomera ruficornis from Cecropia pachystachya bushes was studied in an area of Atlantic forest in northeastern Brazil. Our results show that Azteca muelleri expel Coelomera ruficornis from Cecropia pachystachya and that the number of ants leaving a colony (defence force size) is negatively correlated with the residence time of an adult beetle on the plant. Colonies with larger defence forces recruited larger numbers of ants, resulting in faster herbivore discovery (r 2=0.80; n=17; P<0.001) and reduced herbivore residence time on a leaf (r 2=0.79 n=23; P<0.001) before being driven off by the ants. We also found a negative and significant relationship between herbivore damage on leaves and ant colony size (r 2=0.28; n=17; P<0.05). We conclude that larger colonies have more individuals available to patrol a plant and recruit defenders toward herbivores. This reduces the time spent to locate and expel susceptible herbivores from the plant. Since the plant probably benefits from reduced herbivory and the plant provides food for the ants, the association between Azteca muelleri and Cecropia pachystachya appears mutualistic.  相似文献   

11.
The palaeotropic pioneer tree genus Macaranga Thouars (Euphorbiaceae) is characterized by various types of mutualistic interactions with specific ant partners (mainly Crematogaster spp.). About 30 species are obligate ant-plants (myrmecophytes). We used amplified fragment length polymorphism (AFLP) markers to assess phylogenetic relationships among 108 Macaranga specimens from 43 species, including all available taxa from the three sections known to contain myrmecophytes. Eight primer combinations produced 426 bands that were scored as presence/absence characters. Banding patterns were analyzed phenetically, cladistically and by principal coordinates analysis. Monophyly of section Pruinosae is clearly supported. There is also good evidence for a monophyletic section Pachystemon that includes the puncticulata group. The monophyly of section Winklerianae and relationships between the three sections remain ambiguous. Section Pachystemon is subdivided into four well-supported monophyletic subclades that presumably correspond to taxonomic entities.We acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG Fi606/4-1, DFG We1830/2-1, 4-1 and 4-2), which in part was granted in the frame of the DFG-SPP 1127 Radiations: origins of biological diversity. Part of the plant material was kindly supplied by Dr. H. Feldhaar (University of Würzburg), Dr. U. Moog (University of Kassel) and Dr. F. Slik (Leiden University Branch, Nationaal Herbarium Nederland). We thank the University of Malaysia (Dr. Rosli b. Hashim) and Taman Taman Sabah (Datuk Lamri Ali; Dr. J. Nais) for permits and logistic support, and EPU for permission to conduct research in Malaysia.  相似文献   

12.
Summary The relation between ant-plant specificity and the use of host plants as a resource was investigated in the facultative, myrmecophytic orchid, Caularthron bilamellatum (Rchg.f.) Schult. Using stable isotopes, we determined the portion of the ants' diets derived from host plants. We documented that six ant species inhabiting the orchid: (1) derived nutritional benefit from host orchids, and (2) had species-specific levels of extrafloral nectar use. Proportionate contribution of extrafloral nectar to ant diets ranged from 11 to 48%. These results demonstrate extreme interspecific differences in the nutritional benefits received by ants from host orchids. Interspecific differences in nutritional benefits from orchid nectar may be affected by colony size, nutritional needs, behavioral ecology of the ants, and the abundance of alternate food sources.  相似文献   

13.
Summary We hypothesize that the tritrophic interaction between ants, the aphid Aphis jacobaeae, the moth Tyria jacobaeae, and the plant Senecio jacobaea can explain the genetic variation observed in pyrrolizidine alkaloid concentration in natural populations of S. jacobaea. The ant Lasius niger effectively defends S. jacobaea plants infested with A. jacobaeae against larvae of T. jacobaeae. S. jacobaea plants with A. jacobaeae which are defended by ants escape regular defoliation by T. jacobaeae. Plants with aphids and ants have a lower pyrrolizidine alkaloid concentration than plants without aphids and ants. When these data are fitted to an existing theoretical model for temporal variation in fitness it is shown that varying herbivore pressure by T. jacobaeae in interaction with ants defending aphid-infested plants with a low pyrrolizidine alkaloid concentration can lead to a stable polymorphism in pyrrolizidine alkaloid concentration. Costs of the production and maintenance of pyrrolizidine alkaloids are not accounted for in the model.Publication of the Meijendel-comité, new series no. 114  相似文献   

14.
Ruhren  Scott 《Plant Ecology》2003,166(2):189-198
There are many examples of mutualistic interactions between ants and plants bearing extrafloral nectaries (EFN). The annual legume Chamaecrista nictitans (Caesalpineaceae) secretes nectar from EFN, specialized structures that attract ants, spiders, and other arthropods. The effects of manipulated C. nictitans patch size and location on plant-ant interactions were tested. Defense from herbivores was not detected; plants with ants did not set significantly more fruit or seed than plants with ants excluded. On the contrary, in one year, plants without ants set more fruit and seed than C. nictitans with ants. The cause of this was not determined. Furthermore, insect herbivore damage was low during three years of observations. Sennius cruentatus (Bruchidae), a specialist seed predator beetle, escaped ant defense despite the presence of numerous ants. Beetle progeny are protected during development by living inside maturing C. nictitans fruit and preventing fruits from dehiscing before emerging as adults. Although ants reduced percent of infestation in 1995, the total number of S. cruentatus per plant was not affected by ants in years of infestation. Overall, larger experimental C. nictitans patches attracted more ants, parasitoid wasps, and percent infestation by S. cruentatus while insect herbivores declined with increasing patch size. Location of patches within fields, however, did not affect numbers of arthropod visitors. Similar to manipulated populations, very little insect herbivory occurred in four reference populations. In contrast to the experimental populations, no S. cruentatus were recovered in reference populations of C. nictitans. Herbivory by insects may not always depress seed set by C. nictitans or may not exceed a threshold level. Thus, herbivory-reduction by ants may not have been detectable in these results. Seed predation may be more influential on C. nictitans reproduction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

16.
Summary. A shift in colony founding behaviour from single queen (haplometrosis) to multiple queens (pleometrosis) was observed locally in the obligate plant-ant Crematogaster (Decacrema) morphospecies 2, which is associated with Macaranga trees in Borneo. In addition, about a quarter of all mature colonies (27 of 95 trees examined) were found to be multiple queen colonies. They arose either directly from pleometrotic founding colonies or secondarily by adoption of additional queens. Using microsatellite markers, we showed that queens in colonies founded through pleometrosis are unrelated and each queen participates in producing worker offspring, albeit with significant skew in a third of the colonies. In mature polygynous colonies, all resident queens contributed to the production of workers and sexual offspring. Relatedness of queens in mature polygynous colonies was not significantly higher than in foundress associations. We hypothesize that increased nest site limitation in this specific interaction trigger the observed shift in colony founding behaviour. Crematogaster msp. 2 inhabits the light demanding pioneer plant species Macaranga pearsonii that is typical for early successional stages of secondary forests. Thus suitable host-plants for colonisation are abundant for only a short time in highly disturbed sites and become increasingly sparse when secondary forest matures.Received 6 September 2004; revised 29 November; accepted 10 December 2004.  相似文献   

17.
We combined laboratory and nursery experiments to analyse the effectiveness of sheep as endozoochorous seed dispersers of six native shrubby Cistaceae species collected in SE Spain (Helianthemum apenninum (L.) Mill., H. violaceum (Cav.) Pers., Fumana ericoides (Cav.) Grand., F. thymifolia (L.) Spach, Cistus monspeliensis L. and C. laurifolius L.), considering the main stages after seed ingestion, i.e. seed recovery, seed germination, seedling emergence and early seedling establishment. Seed recovery after gut passage was high (around 40%) for all the species, except F. thymifolia (12%). Most seeds (ca. 90%) were recovered within 48 h after ingestion for all the species, although seeds were still recovered up to 96 h after ingestion. Gut passage increased germination up to seven-fold compared to non-ingested seeds. Furthermore, seedling emergence from seeds contained in pellets was overall similar (intact pellets) to or higher (crumbled pellets) than emergence from seeds without dung. Survival of emerged seedlings and mass of seedlings after 20 days were not reduced by dung. Sheep act therefore as effective dispersers of these Cistaceae species by scattering seeds and promoting germination, while faeces do not hamper seedling establishment. We conclude that the interaction between herbivorous ungulates and these dry-fruited species may be considered a mutualism qualitatively similar to the mutualism between frugivorous vertebrates and fleshy-fruited plants.  相似文献   

18.
The paleotropical tree genusMacaranga (Euphorbiaceae) comprises all stages of interaction with ants, from facultative associations to obligate myrmecophytes. In SE.-Asia food availability does not seem to be the limiting factor for the development of a close relationship since all species provide food for ants in form of extrafloral nectar and/or food bodies. Only myrmecophyticMacaranga species offer nesting space for ants (domatia) inside internodes which become hollow due to degeneration of the pith. Non-myrmecophytic species have a solid stem with a compact and wet pith and many resin ducts. The stem interior of some transitional species remains solid, but the soft pith can be excavated. The role of different ant-attracting attributes for the development of obligate ant-plant interactions is discussed. In the genusMacaranga, the provision of nesting space seems to be the most important factor for the evolution of obligate myrmecophytism.  相似文献   

19.
Summary The female flowers of Croton bonplandianum bear nectar glands which become active during fruit maturation and attain peak activity just prior to the splitting of fruits. This temporal specificity of nectar gland activity is shown to facilitate seed dispersal by ants, which are attracted to the plant only during the fruit maturation period. The nectar glands establish a nectar influence zone with a radius of 60 cm around the plant within which seed dispersal by ants is effective. Seed dispersal by ants is facilitated only if the seeds are placed within this nectar influence zone. This is accomplished by an intriguing evolutionary shift in the maturation pattern of the fruits. Unlike the usual acropetal development, fruit maturation in Croton is temporally asymmetrical, with the fruits nearer the parental axis maturing early. This unique pattern of fruit development together with the polychasial branching system leads to a concentration of seeds within the nectar influence zone and enhances seed dispersal by ants. The proximate factors responsible for this asynchronous fruit maturity were investigated.  相似文献   

20.
The aggressive behavior of ants that protect plants from herbivores in exchange for rewards such as shelter or food is thought to be an important form of biotic defense against herbivory, particularly in tropical systems. To date, however, no one has compared the defensive responses of different ant taxa associated with the same plant species, and attempted to relate these differences to longer-term efficacy of ant defense. We used experimental cues associated with herbivory—physical damage and extracts of chemical volatiles from leaf tissue—to compare the aggressive responses of two ant species obligately associated with the Amazonian myrmecophyte Tococa bullifera (Melastomataceae). We also conducted a colony removal experiment to quantify the level of resistance from herbivores provided to plants by each ant species. Our experiments demonstrate that some cues eliciting a strong response from one ant species elicited no response by the other. For cues that do elicit responses, the magnitude of these responses can vary interspecifically. These patterns were consistent with the level of resistance provided from herbivores to plants. The colony removal experiment showed that both ant species defend plants from herbivores: however, herbivory was higher on plants colonized by the less aggressive ant species. Our results add to the growing body of literature indicating defensive ant responses are stimulated by cues associated with herbivory. However, they also suggest the local and regional variation in the composition of potential partner taxa could influence the ecology and evolution of defensive mutualisms in ways that have previously remained unexplored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号