首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flynn CM  Hunt KA  Gralnick JA  Srienc F 《Bio Systems》2012,107(2):120-128
A stoichiometric model describing the central metabolism of Shewanella oneidensis MR-1 wild-type and derivative strains was developed and used in elementary mode analysis (EMA). Shewanella oneidensis MR-1 can anaerobically respire a diverse pool of electron acceptors, and may be applied in several biotechnology settings, including bioremediation of toxic metals, electricity generation in microbial fuel cells, and whole-cell biocatalysis. The metabolic model presented here was adapted and verified by comparing the growth phenotypes of 13 single- and 1 double-knockout strains, while considering respiration via aerobic, anaerobic fumarate, and anaerobic metal reduction (Mtr) pathways, and utilizing acetate, n-acetylglucosamine (NAG), or lactate as carbon sources. The gene ppc, which encodes phosphoenolpyruvate carboxylase (Ppc), was determined to be necessary for aerobic growth on NAG and lactate, while not essential for growth on acetate. This suggests that Ppc is the only active anaplerotic enzyme when cultivated on lactate and NAG. The application of regulatory and substrate limitations to EMA has enabled creation of metabolic models that better reflect biological conditions, and significantly reduce the solution space for each condition, facilitating rapid strain optimization. This wild-type model can be easily adapted to include utilization of different carbon sources or secretion of different metabolic products, and allows the prediction of single- and multiple-knockout strains that are expected to operate under defined conditions with increased efficiency when compared to wild type cells.  相似文献   

2.
A DNA fragment containing a promoter-operator and structural parts of the uridine phosphorylase gene from Shewanella oneidensis MR-1 was cloned. Cross-heterological expression of the udp genes from Sh. oneidensis MR-1 and Escherichia coli under the control of authentic regulatory regions is shown. The UDP protein accumulates in an active form in the cytoplasmic fraction of cells. The recombinant UDP protein from Sh. oneidensis MR-1 obtained by heterological expression was isolated and characterized. E. coli udp gene promoter activity was observed during heterological expression in Sh. oneidensis MR-1 cells under both aerobic and anaerobic conditions.  相似文献   

3.
An expression plasmid was constructed in order to carry out heterologous expression of the gene of the NAD+-dependent formate dehydrogenase (FDH) from methylotrophic bacterium Moraxella sp. in the cells of Shewanella oneidensis MR-1 under aerobic and anaerobic conditions. In both modes of cell cultivation, recombinant FDH activity was revealed in the cell lysate of the transformants. In the medium with la? tate as a carbon source, the rate of anaerobic respiration determined as the rate of conversion of fumarate (the electron acceptor) to succinate was higher in the transformant with recombinant FDH. Anaerobic cultivation of the FDH-containing transformant of S. oneidensis MR-1 in a microbial fuel cell (MFC) revealed increased current density.  相似文献   

4.
Cytochrome c3 from Desulfovibrio vulgaris Miyazaki F was successfully expressed in the facultative aerobe Shewanella oneidensis MR-1 under anaerobic, microaerophilic, and aerobic conditions, with yields of 0.3 to 0.5 mg of cytochrome/g of cells. A derivative of the broad-host-range plasmid pRK415 containing the cytochrome c3 gene from D. vulgaris Miyazaki F was used for transformation of S. oneidensis MR-1, resulting in the production of protein product that was indistinguishable from that produced by D. vulgaris Miyazaki F, except for the presence of one extra alanine residue at the N terminus.  相似文献   

5.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

6.
While the toxicological effects of mercury (Hg) are well studied in mammals, little is known about the mechanisms of toxicity to bacterial cells lacking an Hg resistance (mer) operon. We determined that Shewanella oneidensis MR-1 is more sensitive to ionic mercury [Hg(II)] under aerobic conditions than in fumarate reducing conditions, with minimum inhibitory concentrations of 0.25 and 2 μM respectively. This increased sensitivity in aerobic conditions is not due to increased import, as more Hg is associated with cellular material in fumarate reducing conditions than in aerobic conditions. In fumarate reducing conditions, glutathione may provide protection, as glutathione levels decrease in a dose-dependent manner, but this does not occur in aerobic conditions. Hg(II) does not change the redox state of thioredoxin in MR1 in either fumarate reducing conditions or aerobic conditions, although thioredoxin is oxidized in Geobacter sulfurreducens PCA in response to Hg(II) treatment. However, treatment with 0.5 μM Hg(II) increases lipid peroxidation in aerobic conditions but not in fumarate reducing conditions in MR-1. We conclude that the enhanced sensitivity of MR-1 to Hg(II) in aerobic conditions is not due to differences in intracellular responses, but due to damage at the cell envelope.  相似文献   

7.
8.
Sensitivity of Escherichia coli cells in seawater, considered in terms of culturability loss, was examined after different growth periods in a mineral medium supplemented with glucose (M9) at 37 degrees C under aerobic or anaerobic conditions. Their sensitivity varied considerably during the different growth phases and differed when cells were grown under aerobic or anaerobic conditions. Sensitivity of aerobic cells rapidly increased during the lag phase, then decreased during the exponential phase and became minimal during the stationary phase. Coliforms isolated from human faeces showed a similar sensitivity after incubation in wastewater at 37 degrees C for 3 h. The sensitivity phase was completely eliminated when cells were incubated with chloramphenicol. Variation of sensitivity in anaerobic cells according to their growth phase was comparable with that found for aerobic cells which had been left in seawater for a long period (6 d). However, for shorter periods in this medium (1-2 d), cells grown until the mid-exponential phase remained resistant to seawater. During the second half of the growth phase, they were as sensitive as aerobic cells at lag phase. Escherichia coli cells grown under anaerobic conditions, such as found in the intestine, progressively adapt to aerobic conditions after their transfer into aerated seawater and their sensitivity to seawater increases. On a practical level, these observations show that it is necessary to control accurately the age of cells before inoculation in seawater microcosms to conserve a comparative value in results. The importance of this factor is vital as all variations in sensitivity of cells to seawater according to their prior growth phase proved to be logarithmic functions of time.  相似文献   

9.
Euglena gracilis cells grown under aerobic and anaerobic conditions were compared for their whole cell rhodoquinone and ubiquinone content and for major protein spots contained in isolated mitochondria as assayed by two-dimensional gel electrophoresis and mass spectrometry sequencing. Anaerobically grown cells had higher rhodoquinone levels than aerobically grown cells in agreement with earlier findings indicating the need for fumarate reductase activity in anaerobic wax ester fermentation in Euglena. Microsequencing revealed components of complex III and complex IV of the respiratory chain and the E1beta subunit of pyruvate dehydrogenase to be present in mitochondria of aerobically grown cells but lacking in mitochondria from anaerobically grown cells. No proteins were identified as specific to mitochondria from anaerobically grown cells. cDNAs for the E1alpha, E2, and E3 subunits of mitochondrial pyruvate dehydrogenase were cloned and shown to be differentially expressed under aerobic and anaerobic conditions. Their expression patterns differed from that of mitochondrial pyruvate:NADP(+) oxidoreductase, the N-terminal domain of which is pyruvate:ferredoxin oxidoreductase, an enzyme otherwise typical of hydrogenosomes, hydrogen-producing forms of mitochondria found among anaerobic protists. The Euglena mitochondrion is thus a long sought intermediate that unites biochemical properties of aerobic and anaerobic mitochondria and hydrogenosomes because it contains both pyruvate:ferredoxin oxidoreductase and rhodoquinone typical of hydrogenosomes and anaerobic mitochondria as well as pyruvate dehydrogenase and ubiquinone typical of aerobic mitochondria. Our data show that under aerobic conditions Euglena mitochondria are prepared for anaerobic function and furthermore suggest that the ancestor of mitochondria was a facultative anaerobe, segments of whose physiology have been preserved in the Euglena lineage.  相似文献   

10.
The yeast Saccharomyces cerevisiae was shown to be extremely sensitive to dehydration–rehydration treatments when stationary phase cells were subjected to conditions of severe oxygen limitation, unlike the same cells grown in aerobic conditions. The viability of dehydrated anaerobically grown yeast cells never exceeded 2 %. It was not possible to increase this viability using gradual rehydration of dry cells in water vapour, which usually strongly reduces damage to intracellular membranes. Specific pre-dehydration treatments significantly increased the resistance of anaerobic yeast to drying. Thus, incubation of cells with trehalose (100 mM), increased the viability of dehydrated cells after slow rehydration in water vapour to 30 %. Similarly, pre-incubation of cells in 1 M xylitol or glycerol enabled up to 50–60 % of cells to successfully enter a viable state of anhydrobiosis after subsequent rehydration. We presume that trehalose and sugar alcohols function mainly according to a water replacement hypothesis, as well as initiating various protective intracellular reactions.  相似文献   

11.
Shewanella oneidensis MR-1 is a gram-negative facultative aerobic bacterium living at oxic-anoxic interfaces in nature. The plasticity of terminal electron-acceptors used under anaerobic conditions is huge, but the adaptation to these different environmental conditions remains unclear. In this work, we used a proteomic approach to study the protein content when the organism is grown under anaerobic respiration conditions on insoluble ferric oxide. By analysis of two-dimensional gel patterns of soluble protein extracts, we discovered 20 differentially displayed proteins. The protein spots were further analyzed by mass spectrometry for which we used, in addition to nano-high-performance liquid chromatography coupled to an electrospray ionization-quadrupole-time of flight instrument, a recently introduced matrix-assisted laser desorption/ionization (MALDI) tandem-time of flight mass spectrometer. The instrument allows the acquisition of high quality spectra, in both the mass spectrometry and tandem mass spectrometry mode, and is therefore able to identify protein spots unambiguously. Advantageous to electrospray ionization is a minimised sample handling, inherent to MALDI ionization, and the presence of high energy fragmentation ions, generating sequence information that also can differentiate isobaric amino acids. With this strategy, we could point out a regulatory protein that is up-regulated under iron(III) respiration. This protein, the aerobic respiration control protein (ArcA), has been reported as being a regulator during anaerobiosis in other species. To our knowledge, this is the first report of the possible involvement of ArcA from S. oneidensis MR-1 in the reduction of ferric oxide.  相似文献   

12.
Escherichia coli HB101 was grown in complex medium under anaerobic and aerobic conditions. Cells prepared under these two different conditions were characterized by two-dimensional protein gel electrophoresis, by NMR measurements under identical (anaerobic) conditions, and by measuring the kinetics of glucose uptake and catabolite end-product appearance in the medium under identical anaerobic conditions. Specific rates of glucose uptake and end-product formation were significantly greater for the anaerobically grown cells, which also exhibited lower intracellular concentrations of sugar phosphates, nucleoside di-and triphosphates, UDPG, and NAD(H). Two-dimensional gel electrophoretic analyses reveal changes in the intracellular levels of proteins involved in pyruvate catabolism that have been observed previously for E. coli grown in minimal medium under aerobic and anaerobic conditions. Enzymes involved in the TCA cycle were not detected in cells grown aerobically or anaerobically in complex medium.  相似文献   

13.
Cytochrome c(3) from Desulfovibrio vulgaris Miyazaki F was successfully expressed in the facultative aerobe Shewanella oneidensis MR-1 under anaerobic, microaerophilic, and aerobic conditions, with yields of 0.3 to 0.5 mg of cytochrome/g of cells. A derivative of the broad-host-range plasmid pRK415 containing the cytochrome c(3) gene from D. vulgaris Miyazaki F was used for transformation of S. oneidensis MR-1, resulting in the production of protein product that was indistinguishable from that produced by D. vulgaris Miyazaki F, except for the presence of one extra alanine residue at the N terminus.  相似文献   

14.
Under aerobic or anaerobic conditions, tyrosinase undergoes a process of irreversible inactivation induced by its physiological substrate l-dopa. Under aerobic conditions, this inactivation occurs through a process of suicide inactivation involving the form oxy-tyrosinase. Under anaerobic conditions, both the met- and deoxy-tyrosinase forms undergo irreversible inactivation. Suicide inactivation in aerobic conditions is slower than the irreversible inactivation under anaerobic conditions. The enzyme has less affinity for the isomer d-dopa than for l-dopa but the velocity of inactivation is the same. We propose mechanisms to explain these processes.  相似文献   

15.
A tetracycline resistance (Tcr) gene that was found originally on two Bacteroides plasmids (pBF4 and pCP1) confers tetracycline resistance on Escherichia coli, but only when it is grown aerobically. Using maxicells, we have identified a 44-kilodalton protein which is encoded by the region that carries the Tcr gene and which may be the Tcr gene product. Localization experiments indicate that this 44-kilodalton protein is cytoplasmic. To determine whether the tetracycline resistance gene is expressed under anaerobic conditions, we have constructed a protein fusion between the Tcr gene and lacZ. In strains of E. coli carrying the fusion, beta-galactosidase activity was the same when the cells were grown under anaerobic conditions as when the cells were grown under aerobic conditions. This indicates that the tetracycline resistance gene product is made under anaerobic conditions but does not work. The failure of the Tcr protein to function under anaerobic conditions was not due to a requirement for function of the anaerobic electron transport system, because neither nitrate nor fumarate added to anaerobic media restored tetracycline resistance. Inhibition of the aerobic electron transport system with potassium cyanide did not prevent growth on tetracycline of cells containing the Tcr gene. A heme-deficient mutant, E. coli SHSP19, which carries the Tcr gene, was still resistant to tetracycline even when grown in heme-free medium. These results indicate that functioning of the Tcr gene product is not dependent on the aerobic electron transport system. Thus the requirement for aerobic conditions appears to reflect a requirement for oxygen. Spent medium from an E. coli strain carrying the Tcr gene, which was grown in medium containing tetracycline (50 micrograms/ml), did not inhibit growth of a tetracycline-susceptible strain of E. coli. Thus, the Tcr gene product may be detoxifying tetracycline.  相似文献   

16.
The nature of the endogenous reserves of Saccharomyces cerevisiae was examined with respect to conditions of growth, specifically extremes of oxygen tension and carbon source. Cells were grown in batch culture at 30 C under aerobic conditions on a galactose or glucose carbon source and under anaerobic conditions on glucose. The greatest effect of growth conditions on the chemical composition of the cells was on their fatty acid and sterol content.Cells grown under both aerobic and anaerobic conditions mobilised concurrently protein, glycogen, trehalose and fatty acids during a period of 72 hours' starvation under aerobic conditions. The viability of both types of the aerobically grown cells declined to 75% during this period and was not influenced by the initial fatty acid and sterol content of the cells. Cells grown anaerobically showed a more rapid decline in viability which was only 17% after 72 hours' starvation. This loss of viability was not due to a lack of available endogenous reserves but was probably due to an impaired membrane function caused by a deficiency of sterols and unsaturated fatty acids.  相似文献   

17.
Abstract Transformation of chlorinated aliphatic compounds was examined in Shewanella putrefaciens strain MR-1, an obligately respiring facultative anaerobe. Under anaerobic conditions, MR-1 has been shown to transform tetrachloromethane to trichloromethane (24%), CO2 (7%), cell-bound material (50%) and unidentified nonvolatile products (4%). The highest rate and extent of transformation were observed with MR-1 cells grown under iron(III)-respiring conditions. Lactate, formate and hydrogen were the most effective electron donors. Tetrachloromethane was not degraded in the presence of oxygen. Transformation of other chlorinated methanes and ethenes was not observed.  相似文献   

18.
A strain of Escherichia coli serotype O157 was grown in steady state chemostat culture under aerobic, oxygen-limited and anaerobic conditions. The growth and metabolic efficiency of oxygen-limited and anaerobic cultures was impaired, with biomass yield and the molar growth yield for glucose, Yglucose, reduced markedly in comparison with aerobic cultures. Steady state cells were typically short rods 2-3 microns long, and were encapsulated by a layer of extracellular material. The majority of cells were non-flagellated and fimbriae were not observed. Chemostat-grown cells were significantly more adhesive for HEp-2 monolayers than cells grown in aerobic batch culture. Furthermore, oxygen-limited and anaerobic cultures were significantly more adhesive for Hep-2 cells when compared with cells grown in aerobic chemostat culture, possibly reflecting increased pathogenicity associated with the induction of novel adhesins. Type 1 pili were not responsible for increased adherence. Verocytotoxins, VT1 and VT2, were expressed constitutively and were not influenced by oxygen availability. This study demonstrates that E. coli O157 is a versatile micro-organism, which responds to environmental conditions likely to be encountered during infection by inducing a phenotype which is more adhesive for human epithelial cells.  相似文献   

19.
A new hydrogen producing bacterium, Rhodopseudomonas palustris P4, originally isolated under an anaerobic/phototrophic condition, grew well under aerobic/chemoheterotrophic or anaerobic/chemoheterotrophic conditions and showed CO-dependent, H2 production activity when transferred to anaerobic conditions. Cell growth was best under an aerobic/chemoheterotrophic condition as the doubling time of 1 h, while the H2 production activity was highest in the cells grown under an aerobic/chemoheterotrophic condition at 20 mmol g–1 cell–1 h–1.  相似文献   

20.
Catabolite repression of beta-galactosidase synthesis in E. coli 3000A1 (adenine-) was studied under a variety of growth conditions. The differential rate of induced beta-galactosidase synthesis was maximal at the growth rate of 0.75 division per h, irrespective of whether growth conditions were aerobic or anaerobic. The addition of cyclic AMP (cAMP) to the medium partly restored the repressed synthesis of beta-galactosidase under some growth conditions, but showed little or no effect on the enzyme synthesis under other conditions. Although growth rate and profile of beta-galactosidase synthesis in glucose-grown cells were similar to those in arabinose-grown cells, the acceleration of beta-galactosidase synthesis upon the addition of cAMP was found only in glucose-grown cells. The cells aerobically grown in the presence of glycerol, xylose, or arabinose showed a high synthetic rate of cAMP and were insensitive to exogenously supplied cAMP as regards beta-galactosidase synthesis. Although the cells grown with glucose showed similar rates of cAMP synthesis under aerobic and anaerobic conditions, the differential rate of beta-galactosidase synthesis was much higher in the anaerobic state than in the aerobic state. These findings support the idea that catabolite repression found in the strain is caused through two mechanisms, i.e., cAMP-mediated and cAMP-independent ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号