首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微生物数量的快速检测一直是工业生产与食品行业需要解决的问题,腺嘌呤核苷三磷酸(adenosine triphosphate,ATP)生物发光法具有操作简便、检测周期短等优点,可满足一般微生物检测的需求。然而,ATP生物发光法的准确性也受到不同因素的影响,如微生物的ATP检测限值较高、微生物自身及其他因素(如非微生物ATP、提取剂种类、荧光素酶活性等)均对微生物数量的检测产生影响。本文简述了不同微生物数量检测方法的优缺点,介绍了ATP生物发光法的发展历程及原理,综述了非微生物ATP与游离ATP、微生物量、ATP提取剂、荧光素酶等因素对ATP生物发光法灵敏度与稳定性的影响,归纳总结了ATP生物发光法及检测设备在食品、医疗、污水处理等领域的应用现状,并就ATP生物发光法体系的优化及ATP在线检测的应用等方面进行了展望,以期为ATP生物发光法的高效应用提供新的思路。  相似文献   

2.
Molecular biological methods for the detection and characterisation of microorganisms have revolutionised diagnostic microbiology and are now part of routine specimen processing. Polymerase chain reaction (PCR) techniques have led the way into this new era by allowing rapid detection of microorganisms that were previously difficult or impossible to detect by traditional microbiological methods. In addition to detection of fastidious microorganisms, more rapid detection by molecular methods is now possible for pathogens of public health importance. Molecular methods have now progressed beyond identification to detect antimicrobial resistance genes and provide public health information such as strain characterisation by genotyping. Treatment of certain microorganisms has been improved by viral resistance detection and viral load testing for the monitoring of responses to antiviral therapies. With the advent of multiplex PCR, real-time PCR and improvements in efficiency through automation, the costs of molecular methods are decreasing such that the role of molecular methods will further increase. This review will focus on the clinical utility of molecular methods performed in the clinical microbiology laboratory, illustrated with the many examples of how they have changed laboratory diagnosis and therefore the management of infectious diseases.  相似文献   

3.
近年来,噬菌体由于其特异性侵染细菌的特性,在食品加工及保藏过程中有害微生物的控制和检测方面展现出良好的应用前景。例如在食品表面喷洒噬菌体或将噬菌体与食品包装材料结合,对食源性致病菌及腐败菌加以控制,以及利用基因工程手段构建报告噬菌体对食源性致病菌进行快速检测等。然而,噬菌体也是危害食品发酵的重要因素之一,轻则减产,重则引起整个发酵过程失败,造成巨大的经济损失。目前主要通过噬菌体消毒及灭活、发酵菌种变换等方式防止噬菌体污染。本文综述了食品工业中噬菌体应用及危害的研究现状,以期为拓宽噬菌体在食品工业中的应用途径及开发噬菌体污染防治的新技术提供理论依据。  相似文献   

4.
自1898年Stewart提出利用电化学法检测微生物,电化学法已发展成为一种微生物快速检测的方法。根据检测的参数不同,电化学微生物检测法可以分为阻抗微生物法和介电常数法。阻抗法主要用于食品工业中微生物的快速检测(≤107 cfu/mL),尤其用于易腐食品的微生物快速检测,以期实现在其发生明显腐败之前得到检测结果。而介电常数则用于生物发酵过程中的微生物数量的快速测定,可以实现在线监测微生物数量及生物发酵过程的实时控制。电化学法由于其检测迅速、可以实现自动化检测,在工业化生产中具有广阔的应用前景。  相似文献   

5.
Summary For economic reasons, the brewing industry is extremely interested in methods leading to the rapid discovery and identification of unwanted microorganisms. Immunofluorescence and flow cytometry are offered as a solution in the task, to detect and count contaminating microorganisms in yeasts.  相似文献   

6.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

7.
A rapid and effective method for direct detection, selection and testing of microorganisms able to produce both cell-bound and extracellular true lipases is described. The method is based on formation of clearance zones on turbid solid media with emulsified olive oil around or under the colonies, cell fractions or culture supernatant of lipase-producing organisms. The method was successfully applied for the screening and isolation of microorganisms producing alkaline lipases. The article is published in the original.  相似文献   

8.
食源性致病菌是引发食物中毒的主要微生物,对人类的健康构成了重要威胁,也逐渐发展为公共卫生、食品工业部门高度重视的一个问题。近年来,因食源性致病菌产生的疾病在世界各地蔓延,其中,大肠杆菌O157∶H7是食源性致病菌种类中造成病死率较高的一种细菌,其感染剂量低、致病性强等特点引起研究人员和世界各国卫生组织的广泛关注。基于此,对大肠杆菌O157∶H7的检测方法及其演变进行了梳理和比较分析,并着重综述了生物传感器(biosensor)在其检测中的应用进展,以期为大肠杆菌O157∶H7快速、准确和可商业化的检测方法的研发提供参考。  相似文献   

9.
刘坤香  刘博  薛莹  黄巍  李备 《微生物学报》2023,63(5):1833-1849
快速准确地识别和鉴定微生物对于环境科、食品质量以及医学诊断等领域研究至关重要。拉曼光谱(Raman spectroscopy)已经被证明是一种能够实现微生物快速诊断的新技术,在提供微生物指纹图谱信息的同时,能够快速、非标记、无创、敏感地在固体和液体环境中实现微生物单细胞水平的检测。本文简单介绍了拉曼光谱的基本概念和原理,重点综述了拉曼光谱微生物检测应用中的样品处理方法及光谱数据处理方法。除此之外,本文概括了拉曼光谱在细菌、病毒和真菌中的应用,其中单独概括了拉曼在细菌快速鉴定和抗生素药敏检测中的应用。最后,本文阐述了拉曼光谱在微生物检测中的挑战和展望。  相似文献   

10.

Background  

To date, the detection of live microorganisms present in the environment or involved in infections is carried out by enumeration of colony forming units on agar plates, which is time consuming, laborious and limited to readily cultivable microorganisms. Although cultivation-independent methods are available, they involve multiple incubation steps and do mostly not discriminate between dead or live microorganisms. We present a novel generic method that is able to specifically monitor living microorganisms in a real-time manner.  相似文献   

11.
麦角硫因(ergothioneine,EGT)基于其强抗氧化及体内消耗率低的特点,在人体内拥有多种重要的生理功能。但是在高产EGT微生物筛选和新菌株的选育研究中,现有的EGT检测方法因其步骤繁琐、使用的试剂和设备昂贵而亟待改进。本研究基于EGT的理化性质,建立了EGT-硫氰酸铁高通量快速检测体系,同时选用不同EGT产量的灵芝菌株以及灵芝融合新菌株对该检测体系的准确性进行验证。结果表明该方法可以快速准确地比较出样本间EGT产量高低,使原本需3~4天的工作缩短至2~3 h,HPLC验证结果显示,EGT-硫氰酸铁高通量快速检测体系效果良好,体系稳定。本研究结果将为高产EGT微生物的高通量筛选及高产EGT新菌株的选育提供新的方法和思路。  相似文献   

12.
于淼  朱旭东  潘皎 《微生物学报》2011,51(11):1147-1453
本论文针对国内外最新的石质文物微生物的检测技术进行了论述,主要包括核酸分析鉴定方法、细胞膜分析法、次级代谢产物分析法和传统培养法等。并综合比较各种方法的优势和不足,对石质文物的生物保护提出展望。石质文物微生物的无损或微损快速检测技术的建立,对于进一步清理石质文物的微生物污染,有效防治微生物对石质文物的腐蚀,保护我国宝贵的文化遗产具有重要的意义。  相似文献   

13.
Aims: Salmonella spp. are an important cause of food‐borne infections throughout world, and the availability of rapid and simple detection techniques is critical for the food industry. Salmonella enterica serovars Enteritidis and Typhimurium cause the majority of human gastroenteritis infections, and there are a reported 40 000 cases of salmonellosis in the United States each year. Methods and Results: A novel rapid and simple isothermal target and probe amplification (iTPA) assay that rapidly amplifies target DNA (Salmonella invA gene) using a FRET‐based signal probe in an isothermal environment was developed for detection Salmonella spp. in pre‐enriched food samples. The assay was able to specifically detect all of 10 Salmonella spp. strains without detecting 40 non‐Salmonella strains. The detection limit was 4 × 101 CFU per assay. The iTPA assay detected at an initial inoculum level of <10 CFU in the pre‐enriched food samples (egg yolk, chicken breast and peanut butter). Conclusions: This detection system requires only a water bath and a fluorometer and has great potential for use as a hand‐held device or point‐of‐care‐testing diagnostics. The iTPA assay is sensitive and specific and has potential for rapid screening of Salmonella spp. by food industry.  相似文献   

14.
A simple and rapid method for the detection and isolation of radionuclide-accumulating microorganisms is described. Water samples are mixed with a radioisotope solution and peptone agar in Petri dishes and incubated at 25 C. After bacterial colonies have appeared the agar is removed from the dish and placed upside down on X-ray film covered with thin plastic foil. Black spots on the developed radiogram reveal which surface colonies contain radionuclide-accumulating bacteria. From these colonies pure cultures are obtained by standard methods. So far, bacterial strains have been isolated accumulating one of the following nuclides: cobalt-60, strontium-89, ruthenium-106, iodine-131, cesium-134, cerium-144.  相似文献   

15.
The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time.  相似文献   

16.
A method for the rapid detection and quantification of Newcastle disease virus (NDV) produced in an animal cell culture-based production system was developed to enhance the speed of the NDV vaccine manufacturing process. A SYBR Green I-based real-time RT-PCR was designed with a conventional, inexpensive RT-PCR kit targeting the F gene of the NDV LaSota strain. The method developed in this study was validated for specificity, accuracy, precision, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The validation results satisfied the predetermined acceptance criteria. The validated method was used to quantify virus samples produced in an animal cell culture-based production system. The method was able to quantify the NDV samples from mid- or late-production phases, but not effective on samples from the early-production phase. For comparison with other quantifiable methods, immunoblotting, plaque assay, and tissue culture infectious dose 50 (TCID50) assay were also performed with the NDV samples. The results demonstrated that the real-time RT-PCR method is suitable for the rapid quantification of virus particles produced in an animal cell-culture-based production system irrespective of viral infectivity.  相似文献   

17.
Pathogens pose a significant threat to humans, animals, and plants. Consequently, a considerable effort has been devoted to developing rapid, convenient, and accurate assays for the detection of these unfavorable organisms. Recently, DNA-microarray based technology is receiving much attention as a powerful tool for pathogen detection. After the target gene is first selected for the unique identification of microorganisms, species-specific probes are designed through bioinformatic analysis of the sequences, which uses the information present in the databases. DNA samples, which were obtained from reference and/or clinical isolates, are properly processed and hybridized with species-specific probes that are immobilized on the surface of the microarray for fluorescent detection. In this study, we review the methods and strategies for the development of DNA microarray for pathogen detection, with the focus on probe design.  相似文献   

18.
Rapid and sensitive detections of microorganisms are very important for biodefence, food safety, medical diagnosis and pharmaceutics. The present study aims to find out the most proper bioactive surface preparation method to develop rapid, sensitive and selective bacteria biosensor, based on surface plasmon resonance (SPR) spectroscopy. Escherichia coli (E. coli) was used as a model bacterium and four sensing strategies in SPR were tested. Three of these strategies are antibody immobilization methods that are non-specific adsorption, specific adsorption via the avidin-biotin interaction, and immobilization of antibodies via self-assembled monolayer formation. The fourth strategy is a novel method for bacteria enumeration based on the combination of the SPR spectroscopy and immunomagnetic separation with using gold-coated magnetic nanoparticles. According to results, the most efficient SPR method is the one based on gold-coated magnetic nanoparticles. This method allows to specifically separate E. coli from the environment and to quantify rapidly without any labeling procedure. The developed method has a linear range between 30 and 3.0 × 10(4)cfu/ml, and a detection limit of 3 cfu/ml. The selectivity of the method was examined with Enterobacter aerogenes and Enterobacter dissolvens, which did not produce any significant response. The usefulness of the method to detect E. coli in real water samples was also investigated, and the results were compared with the results from plate-counting method. There was no significant difference between the methods (p>0.05).  相似文献   

19.
A highly sensitive and specific RNA biosensor was developed for the rapid detection of viable Escherichia coli as an indicator organism in water. The biosensor is coupled with protocols developed earlier for the extraction and amplification of mRNA molecules from E. coli [Anal. Biochem. 303 (2002) 186]. However, in contrast to earlier detection methods, the biosensor allows the rapid detection and quantification of E. coli mRNA in only 15-20 min. In addition, the biosensor is portable, inexpensive and very easy to use, which makes it an ideal detection system for field applications. Viable E. coli are identified and quantified via a 200 nt-long target sequence from mRNA (clpB) coding for a heat shock protein. For sample preparation, a heat shock is applied to the cells prior to disruption. Then, mRNA is extracted, purified and finally amplified using the isothermal amplification technique Nucleic acid sequence-based amplification (NASBA). The amplified RNA is then quantified with the biosensor. The biosensor is a membrane-based DNA/RNA hybridization system using liposome amplification. The various biosensor components such as DNA probe sequences and concentration, buffers, incubation times have been optimized, and using a synthetic target sequence, a detection limit of 5 fmol per sample was determined. An excellent correlation to a much more elaborate and expensive laboratory based detection system was demonstrated, which can detect as few as 40 E. coli cfu/ml. Finally, the assay was tested regarding its specificity; no false positive signals were obtained from other microorganisms or from nonviable E. coli cells.  相似文献   

20.
New methods for automated, direct nucleic acid purification and detection are required for the next generation of unattended environmental monitoring devices. In this study we investigated whether tunable-surface bead chemistry and peptide nucleic acids (PNA) could enhance the recovery and detection of intact rRNA in both test tube and automated suspension array hybridization formats. Intact rRNA was easily captured and detected on PNA-coated Lumavidin beads from 0.1 ng total RNA with a 15-min hybridization in pH 7 buffer, representing 1.7 x 10(3) cell equivalents of total RNA. DNA-conjugated beads in pH 5 hybridization buffer required an overnight hybridization to achieve a detectable signal at 0.1 ng target RNA. Standard DNA hybridization conditions (pH 7) were one order of magnitude less sensitive than the tunable-surface (pH 5) condition. The PNA-conjugated particles were 100x more sensitive than the tunable-surface DNA particles in the automated format, with a detection limit of 0.1 ng total RNA. The detection limits for total RNA on PNA-conjugated microparticles is immediately conducive to the detection and characterization of microorganisms in low-biomass environments or to the identification of rare sequences in a complex sample mixture, without using PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号