共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen-Si Lin Pei-Juin He Chi-Han Li Wei-Tung Hsu Chang-Jer Wu Kuang-Wen Liao 《Biochemical and biophysical research communications》2010,392(2):183-189
Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results also indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis. 相似文献
2.
José A. Ferreira Maria João Vieira Brian J. Goodfellow Mario A. Monteiro 《Carbohydrate research》2010,345(6):830-7043
With the intent of contributing to a carbohydrate-based vaccine against the gastroduodenal pathogen, Helicobacter pylori, we report here the structure of cell-surface mannans obtained from a virulent strain. Unlike other wild-type strains, this strain was found to express in good quantities this polysaccharide in vitro. Structural analysis revealed a branched mannan formed by a backbone of α-(1→6)-linked mannopyranosyl residues with approximately 80% branching at the O-2 position. The branches were composed of O-2-linked Man residues in both α- and β-configurations:In addition, this strain also expressed cell-surface emblematic H. pylori lipopolysaccharides (LPS) containing partially fucosylated polyLacNAc O-chains. Affinity assays with polymyxin-B and concanavalin A revealed no association between the mannan and the LPS. The described mannans may be implicated in the mediation of host-microbial interactions and immunological modulation. 相似文献
3.
The discovery that Helicobacter pylori is associated with gastric cancer has led to numerous studies that investigate the mechanisms by which H. pylori induces carcinogenesis. Gastric cancer shows genetic instability both in nuclear and mitochondrial DNA, besides impairment of important DNA repair pathways. As such, this review highlights the consequences of H. pylori infection on the integrity of DNA in the host cells. By down-regulating major DNA repair pathways, H. pylori infection has the potential to generate mutations. In addition, H. pylori infection can induce direct changes on the DNA of the host, such as oxidative damage, methylation, chromosomal instability, microsatellite instability, and mutations. Interestingly, H. pylori infection generates genetic instability in nuclear and mitochondrial DNA. 相似文献
4.
Hiroshi Tanaka Shin Nishiumi Naomi Ohnishi Koji Yamamoto Masanori Hatakeyama 《Archives of biochemistry and biophysics》2010,498(1):35-272
CagA protein is the most assessed effecter molecule of Helicobacter pylori. In this report, we demonstrate how CagA protein regulates the functions of dendritic cells (DC) against H. pylori infection. In addition, we found that CagA protein was tyrosine-phosphorylated in DC. The responses to cagA-positive H. pylori in DC were reduced in comparison to those induced by cagA-negative H. pylori. CagA-overexpressing DC also exhibited a decline in the responses against LPS stimulation and the differentiation of CD4+ T cells toward Th1 type cells compared to wild type DC. In addition, the level of phosphorylated IRF3 decreased in CagA-overexpressing DC stimulated with LPS, indicating that activated SHP-2 suppressed the enzymatic activity of TBK1 and consequently IRF3 phosphorylation. These data suggest that CagA protein negatively regulates the functions of DC via CagA phosphorylation and that cagA-positive H. pylori strains suppress host immune responses resulting in their chronic colonization of the stomach. 相似文献
5.
Ching-Yi Lin Chi-Han Li Nu-Man Tsai Wei-Tung Hsu Fang-Hsing Chiang Chia-Ching Chang 《Biochemical and biophysical research communications》2009,388(2):283-289
Helicobacter pylori heat shock protein 60 (HpHsp60) was first identified as an adhesion molecule associated with H. pylori infection. Here we have analyzed the structure of HpHsp60 via amino acid BLAST, circular dichroism, and electrophoresis and the results indicate that most recombinant HpHsp60 molecules exist as dimers or tetramers, which is quite different from Escherichia coli Hsp60. Treatment of human monocytic cells THP-1 with HpHsp60 was found to up-regulate a panel of cytokines including IL-1α, IL-8, IL-10, IFN-γ, TNF-α, TGF-β, GRO, and RANTES. Carboxymethylated HpHsp60 molecules with a switched oligomeric status were able to further enhance NF-κB-mediated IL-8 and TNF-α secretion in THP-1 cells compared to unmodified HpHsp60 molecules. These results indicated that the oligomeric status of HpHsp60s might have an important role in regulating host inflammation and thus help facilitate H. pylori persistent infection. 相似文献
6.
Pierre-Louis Bardonnet Vincent Faivre Paul Boullanger Françoise Falson 《Biochemical and biophysical research communications》2009,383(1):48-53
Helicobacter pylori was isolated in 1982 and confirmed as a gastric pathogenic agent at the end of the 1980s. The present work deals with liposomes formulations in which are incorporated cholesteryl tetraethylene glycol oside as model ligands for H. pylori adhesins. This study is devoted to the behavior of liposomes in gastric conditions. The glycosylated vesicles are stable and the pH of the internal aqueous compartment remains close to 4 even through more acidic conditions are imposed to the external phase (pH 1.2-2). Such a pH gradient depends essentially on the nature of phospholipids used and is not extensively affected by the incorporation of the targeting agent. These aspects are particularly important to the development of liposome formulations against H. pylori, bacteria sensitive to antibiotics which are unstable in very acidic conditions. 相似文献
7.
Sirley V. Pereira Germán A. MessinaJulio Raba 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(2):253-257
In this paper, we have developed and characterized a microfluidic magnetic immunosensor coupled to a gold electrode for the rapid and sensitive quantification of human serum IgG antibodies to Helicobacter pylori. This microorganism cause peptic ulcers and chronic gastritis, affecting around the 10% of the world population. The sensor was completely automated and the antibodies detection in serum samples was carried out using a non-competitive immunoassay based on the use of purified H. pylori antigens that are immobilized on magnetic microspheres 3-aminopropyl-modified. The magnetic microbeads were injected into microchannel devices and manipulated for an external removable magnet. The IgG antibodies in human serum sample are allowed to react immunologically with the immobilized antigens, and the bounded antibodies are quantified by alkaline phosphatase (AP) enzyme-labeled second antibodies specific to human IgG. The p-aminophenyl phosphate (p-APP) was converted to p-aminophenol (p-AP) by AP and an electroactive product was detected on gold layer electrode at 0.250 V. The response current obtained from the product of enzymatic reaction is directly proportional to the activity of the enzyme and, consequently, to the amount of IgG antibodies to H. pylori in serum samples. The electrochemical detection can be done within 1 min and total assay time was 25 min. The calculated detection limits for electrochemical detection and the ELISA procedure were 0.37 and 2.1 U mL−1, respectively, and the within- and between-assay coefficients of variation were below 5%. Our results indicate the potential usefulness of our fabricated microbiochip for the early assessment of human serum immunoglobulin G (IgG) antibodies to H. pylori. 相似文献
8.
Abhishek Srivastava 《Biochemical and biophysical research communications》2010,395(3):348-351
Arginase is a binuclear Mn2+-metalloenzyme of urea cycle that hydrolyses arginine to ornithine and urea. Unlike other arginases, the Helicobacter pylori enzyme is selective for Co2+. Previous study reported that DTT strongly inhibits the H. pylori enzyme activity suggesting that a disulphide bond is critical for the catalysis. In this study, we have undertaken steady-state kinetics, circular dichroism and mutational analysis to examine the role of a disulphide bond in this protein. By mutational analysis, we show that the disulphide bond is not important for catalytic activity; rather it plays an important role for the stability of the protein as observed from thermal denaturation studies. The loss of catalytic activity in the wild-type protein with DTT is due to the interaction with Co2+. This is verified with the Mn2+-reconstituted proteins which showed a marginal loss in the activity with DTT. 相似文献
9.
Chen-Si Lin Pei-Juin He Ming-Shiang Wu Hsiao-Wei Shen Yiu-Kay Lai Kuang-Wen Liao 《Biochemical and biophysical research communications》2010,397(2):283-289
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells. 相似文献
10.
Chromone glucosides, takanechromones A-C (1, 2 and 5) and chromanone glucosides, named takanechromanones A and B (3 and 4), were isolated from the methanolic extracts of Hypericumsikokumontanum together with 27 known compounds. Their structures were established based on spectroscopic evidence. The isolated compounds and some chromone derivatives were assayed for antimicrobial activity against Helicobacter pylori and cytotoxicity against human cancer cell lines. 相似文献
11.
Jiahn-Haur Liao Yu-Huan Sun Chun-Hua Hsu Yu-Ching Lin Shih-Hsiung Wu Chao-Jen Kuo Chun-Hao Huang Shyh-Horng Chiou 《Biochimie》2013
It is generally accepted that most gastrointestinal diseases are probably caused by the bacterial pathogen Helicobacter pylori (H. pylori). In this study we have focused on the comparison of protein expression profiles of H. pylori grown under normal and high-salt conditions by a proteomics approach. We have identified about 190 proteins whose expression levels changed after growth at high salt concentration. Among these proteins, neutrophil-activating protein (NapA) was found to be consistently up-regulated under osmotic stress brought by high salts. We have investigated the effect of high salt on secondary and tertiary structures of NapA by circular dichroism spectroscopy followed by analytical ultracentrifugation to monitor the change of quaternary structure of recombinant NapA with increasing salt concentration. The loss of iron-binding activity of NapA coupled with noticeable energetic variation in protein association of NapA as revealed by isothermal titration calorimetry was found under high salt condition. The phylogenetic tree analysis based on sequence comparison of 16 protein sequences encompassing NapA proteins and ferritin of H. pylori and other prokaryotic organisms pointed to the fact that all H. pylori NapA proteins of human origin are more homologous to NapA of Helicobacter genus than to other bacterial NapA. Based on computer modeling, NapA proteins from H. pylori of human isolates are found more similar to ferritin from H. pylori than to NapA from other species of bacteria. Taken together, these results suggested that divergent evolution of NapA and ferritin possessing dissimilar and diverse sequences follows a path distinct from that of convergent evolution of NapA and ferritin with similar dual functionality of iron-binding and ferroxidase activities. 相似文献
12.
Single-stranded DNA (ssDNA)-binding protein (SSB) plays an important role in DNA replication, recombination, and repair. SSB consists of an N-terminal ssDNA-binding domain with an oligonucleotide/oligosaccharide binding fold and a flexible C-terminal tail involved in protein-protein interactions. SSB from Helicobacter pylori (HpSSB) was isolated, and the ssDNA-binding characteristics of HpSSB were analyzed by fluorescence titration and electrophoretic mobility shift assay. Tryptophan fluorescence quenching was measured as 61%, and the calculated cooperative affinity was 5.4 × 107 M− 1 with an ssDNA-binding length of 25-30 nt. The crystal structure of the C-terminally truncated protein (HpSSBc) in complex with 35-mer ssDNA [HpSSBc-(dT)35] was determined at a resolution of 2.3 Å. The HpSSBc monomer folds as an oligonucleotide/oligosaccharide binding fold with a Y-shaped conformation. The ssDNA wrapped around the HpSSBc tetramer through a continuous binding path comprising five essential aromatic residues and a positively charged surface formed by numerous basic residues. 相似文献
13.
14.
Yasumi Katayama Hajime Kuwayama 《Biochemical and biophysical research communications》2009,388(3):496-500
Previous reports have indicated that Helicobacter pylori (H. pylori) causes epigenetic changes of certain genes such as cancer suppression genes, which may be associated with carcinogenesis. However, the mechanism by which it causes epigenetic changes in certain genes and not in others is unclear. Presently, we focused on a cancer suppression gene, runx3, and demonstrated the following: (1) H. pylori induces nitric oxide (NO) production in macrophages. (2) NO causes methylation of runx3 in epithelial cells. (3) H. pylori induces the methylation of epithelial cells in the presence of macrophages, which is reversed by an NO-specific inhibitor. These results indicate that H. pylori-induced methylation is mediated by NO, and suggest that NO may be a key to the mechanism of how H. pylori causes epigenetic changes in certain genes. Additionally, we demonstrated that lipopolysaccharide, as well as H. pylori, induces NO-mediated methylation, indicating that other inflammation inducers beside H. pylori might induce aberrant methylation of runx3. 相似文献
15.
Jordi Pérez-Gil María BerguaAlbert Boronat Santiago Imperial 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
The methylerythritol phosphate pathway for isoprenoid biosynthesis is an attractive target for the design of new specific antibiotics for the treatment of gastrointestinal diseases associated with the presence of the bacterium Helicobacter pylori since this pathway which is essential to the bacterium is absent in humans.Results
This work reports the molecular cloning of one of the genes of the methylerythritol phosphate pathway form H. pylori (ispDF; HP_1440) its expression in Escherichia coli and the functional characterization of the recombinant enzyme. As shown by genetic complementation and in vitro functional assays the product of the ispDF gene form H. pylori is a bifunctional enzyme which can replace both CDP-methylerythritol synthase and methylerythritol cyclodiphosphate synthase from E. coli.General significance
Designing inhibitors that affect at the same time both enzyme activities of the H. pylori bifunctional enzyme (i.e. by disrupting protein oligomerization) would result in more effective antibiotics which would be able to continue their action even if the bacterium acquired a resistance to another antibiotic directed against one of the individual activities.Conclusion
The bifunctional enzyme would be an excellent target for the design of new, selective antibiotics for the treatment of H. pylori associated diseases. 相似文献16.
17.
Ki Joon Cho Hye Jeong Shin Ji-Hye Lee Sarah S. Park Cheolju Lee Kyung Hyun Kim 《Journal of molecular biology》2009,390(1):83-5248
The crystal structure of recombinant ferritin from Helicobacter pylori has been determined in its apo, low-iron-bound, intermediate, and high-iron-bound states. Similar to other members of the ferritin family, the bacterial ferritin assembles as a spherical protein shell of 24 subunits, each of which folds into a four-α-helix bundle. Significant conformational changes were observed at the BC loop and the entrance of the 4-fold symmetry channel in the intermediate and high-iron-bound states, whereas no change was found in the apo and low-iron-bound states. The imidazole rings of His149 at the channel entrance undergo conformational changes that bear resemblance to heme configuration and are directly coupled to axial translocation of Fe ions through the 4-fold channel. Our results provide the first structural evidence of the translocation of Fe ions through the 4-fold channel in prokaryotes and the transition from a protein-dominated process to a mineral-surface-dominated process during biomineralization. 相似文献
18.
Ruiguang Ge Xuesong SunDongxian Wang Qinglu ZhouHongzhe Sun 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(8):1422-1427
Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Hpn is a histidine-rich protein abundant in this bacterium and forms oligomers in physiologically relevant conditions. In this present study, Hpn oligomers were found to develop amyloid-like fibrils as confirmed by negative stain transition electron microscopy, thioflavin T and Congo red binding assays. The amyloid-like fibrils of Hpn inhibit the proliferation of gastric epithelial AGS cells through cell cycle arrest in the G2/M phase, which may be closely related to the disruption of mitochondrial bioenergetics as reflected by the significant depletion of intracellular ATP levels and the mitochondrial membrane potential. The collective data presented here shed some light on the pathologic mechanisms of H. pylori infections. 相似文献
19.
Tetsufumi Koga Yukio Shimada Kiyoshi Sato Keigo Takahashi Isamu Kikuchi Yoko Okazaki Tomoko Miura Mitsuo Katsuta Masayuki Iwata 《Microbiological research》2002,157(4):323
Our previous study showed that the colonization levels of Helicobacter pylori were higher in the stomachs of 5-day-old miniature pigs than in 2-week-old ones. As dietary factors can cause these differences, we compared two diets, i.e., Weanymilk and a similar formula with a higher concentration of Fe(II), Weanylobulin. The colonization levels in the fundic mucosa were significantly higher in 2-week-old pigs fed Weanylobulin than in those fed Weanymilk. Supplementing Weanylobulin with an iron chelator, deferoxamine mesylate, significantly lowered the bacteria counts in the gastric mucosa. Normal diets supplemented with Fe(II) in 2-month-old pigs caused significantly more sites of bacteria in the antrum compared with normal diets alone. In addition, ranitidine, an inhibitor of gastric acid secretion that reduces Fe(III) to Fe(II) in the stomach, decreased the bacteria counts in 10-month-old pigs. These results suggested that Fe(II) maintained the colonization levels of H. pylori in the stomach of the miniature pigs. 相似文献
20.
Guoqiang Lv Huanhuan ZhuFeng Zhou Zhou LinGang Lin Chenwan Li 《Biochemical and biophysical research communications》2014
Helicobacter pylori (H pylori), infecting half of the world’s population, causes gastritis, duodenal and gastric ulcer, and gastric cancers. AMP-activated protein kinase (AMPK) is a highly conserved regulator of cellular energy and metabolism. Recent studies indicated an important role for AMPK in promoting cell survival. In this study, we discovered that H Pylori induced AMPK activation in transformed (GEC-1 line) and primary human gastric epithelial cells (GECs). Inhibition of H Pylori-stimulated AMPK kinase activity by AMPK inhibitor compound C exacerbated apoptosis in transformed and primary GECs. Meanwhile, downregulation of AMPK expression by targeted shRNAs promoted apoptosis in H pylori-infected GECs. In contrast, A-769662 and resveratrol, two known AMPK activators, or AMPKα1 over-expression, enhanced H Pylori-induced AMPK activation, and inhibited GEC apoptosis. Our data suggested that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) could be the upstream kinase for AMPK activation by H pylori. Partial depletion of TAK1 by shRNAs not only inhibited AMPK activation, but also suppressed survival of H pylori-infected GECs. Taken together, these results suggest that TAK1-dependent AMPK activation protects GECs from H pylori-Induced apoptosis. 相似文献