首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative genomics of Dehalococcoides strains and an enrichment were performed using a microarray targeting genes from all available sequenced genomes of the Dehalococcoides genus. The microarray was designed with 4305 probe sets to target 98.6% of the open-reading frames from strains 195, CBDB1, BAV1 and VS. The microarrays were validated and applied to query the genomes of two recently isolated Dehalococcoides strains, ANAS1 and ANAS2, and their enrichment source (ANAS) to understand the genome–physiology relationships. Strains ANAS1 and ANAS2 can both couple the reduction of trichloroethene, cis-dichloroethene (DCE) and 1,1-DCE, but not tetrachloroethene and trans-DCE with growth, whereas only strain ANAS2 couples vinyl chloride reduction to growth. Comparative genomic analysis showed that the genomes of both strains are similar to each other and to strain 195, except for genes that are within the previously defined integrated elements or high-plasticity regions. Combined results of the two isolates closely matched the results obtained using genomic DNA of the ANAS enrichment. The genome similarities, together with the distinct chlorinated ethene usage of strains ANAS1, ANAS2 and 195 demonstrate that closely phylogenetically related strains can be physiologically different. This incongruence between physiology and core genome phylogeny seems to be related to the presence of distinct reductive dehalogenase-encoding genes with assigned chlorinated ethene functions (pceA, tceA in strain 195; tceA in strain ANAS1; vcrA in strain ANAS2). Overall, the microarrays are a valuable high-throughput tool for comparative genomics of unsequenced Dehalococcoides-containing samples to provide insights into their gene content and dechlorination functions.  相似文献   

2.
Understanding species evolution and improvement requires information of their genome origin and differentiation. Among the species in the family Gramineae, genome identities of Agropyron-Elytrigia-Leymus group are still ambiguous. In order to delineate the genome relationship, nucleotide sequence analysis in the rDNA ITS regions was carried out among the species in the genera Elytrigia, Agropyron, Psathyrostachys, Leymus, and Psacopyrum containing E, St, P, Ns, and Xm genomes. The ITS-1 and ITS-2 showed a narrow range of variation in length except for the presence of a pentanucleotide, TGGGG, in/del in some haplotypes, whereas higher numbers of nucleotide substitutions were observed in most genera. There were 187 variable sites in the ITS-1, 5.8S, and ITS-2 regions, in which a few genome specific mutations were observed. While the level of variation was similar between ITS-1 and ITS-2, the rate of transition mutation versus transversion mutations was different among the ITS-1, 5.8S, and ITS-2 segments. GC contents of the ITS regions ranged between 55–65% between genomes and the haplotypes of P and H genomes were slightly higher than others. In phylogenetic analysis, the ITS haplotypes were classified into two groups; one containing H, Ns, NsXm genomes, and another containing P, St, and E genomes, which are congruous to the genome affinities from other studies. Among the four genomes in Pascopyrum smithii (2n=8x=56, StStNsNsHHXmXm), the haplotypes of H and St genomes were identified with the reference diploid species, but the haplotypes having Ns and Xm genomes were not found in the present analysis.  相似文献   

3.
The streptomycin resistance gene of Pseudomonas syringae pv. papulans Psp36 was cloned into Escherichia coli and used to develop a 500-bp DNA probe that is specific for streptomycin resistance in P. syringae pv. papulans. The probe is a portion of a 1-kb region shared by three different DNA clones of the resistance gene. In Southern hybridizations, the probe hybridized only with DNA isolated from streptomycin-resistant strains of P. syringae pv. papulans and not with the DNA of streptomycin-sensitive strains. Transposon insertions within the region of DNA shared by the three clones resulted in loss of resistance to streptomycin. Colony hybridization of bacteria isolated from apple leaves and orchard soil indicated that 39% of 398 streptomycin-resistant bacteria contained DNA that hybridized to the probe. These included all strains of P. syringae pv. papulans and some other fluorescent pseudomonads and nonfluorescent gram-negative bacteria, but none of the gram-positive bacteria. The same-size restriction fragments hybridized to the probe in P. syringae pv. papulans. Restriction fragment length polymorphism of this region was occasionally observed in strains of other taxonomic groups of bacteria. In bacteria other than P. syringae pv. papulans, the streptomycin resistance probe hybridized to different-sized plasmids and no relationship between plasmid size and taxonomic group or between plasmid size and orchard type, soil association, or leaf association could be detected.  相似文献   

4.
The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.  相似文献   

5.
The complete genome sequence of Bacillus amyloliquefaciens type strain DSM7T is presented. A comparative analysis between the genome sequences of the plant associated strain FZB42 (Chen et al., 2007) with the genome of B. amyloliquefaciens DSM7T revealed obvious differences in the variable part of the genomes, whilst the core genomes were found to be very similar. The strains FZB42 and DSM7T have in common 3345 genes (CDS) in their core genomes; whilst 547 and 344 CDS were found to be unique in DSM7T and FZB42, respectively. The core genome shared by both strains exhibited 97.89% identity on amino acid level. The number of genes representing the core genome of the strains FZB42, DSM7T, and Bacillus subtilis DSM10T was calculated as being 3098 and their identity was 92.25%. The 3,980,199 bp genome of DSM7T contains numerous genomic islands (GI) detected by different methods. Many of them were located in vicinity of tRNA, glnA, and glmS gene copies. In contrast to FZB42, but similar to B. subtilis DSM10T, the GI were enriched in prophage sequences and often harbored transposases, integrases and recombinases. Compared to FZB42, B. amyloliquefaciens DSM7T possessed a reduced potential to non-ribosomally synthesize secondary metabolites with antibacterial and/or antifungal action. B. amyloliquefaciens DSM7T did not produce the polyketides difficidin and macrolactin and was impaired in its ability to produce lipopeptides other than surfactin. Differences established within the variable part of the genomes, justify our proposal to discriminate the plant-associated ecotype represented by FZB42 from the group of type strain related B. amyloliquefaciens soil bacteria.  相似文献   

6.
LINE-1 (L1) is the most represented sequence of the human genome (17% of the total genomic mass). Moreover, it has been proposed for many years and demonstrated more recently that L1 has contributed to the mobilization of pseudogenes, small non-coding RNAs, such as tRNAs or snRNAs, and SINEs. In fact, it is estimated that L1 is responsible for at least 30% of our genome. The mobilization of non-L1 RNAs can occur in different ways and at different steps of the retrotransposition cycle. Here, by looking at U6 snRNA sequences mobilized by L1, we have observed an ancient repeat sequence derived from U6, present in all primate genomes. We were able to trace its origin in Euarchota genomes, most likely during the divergence of the four orders; Scandentia, Dermoptera, Plesiadapiform (extinct) and Primates.  相似文献   

7.

Background

Wheat is an excellent plant species for nuclear mitochondrial interaction studies due to availability of large collection of alloplasmic lines. These lines exhibit different vegetative and physiological properties than their parents. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic condition, three mitochondrial genomes of the Triticum-Aegilops species were sequenced: 1) durum alloplasmic line with the Ae. longissima cytoplasm that carries the T. turgidum nucleus designated as (lo) durum, 2) the cytoplasmic donor line, and 3) the nuclear donor line.

Results

The mitochondrial genome of the T. turgidum was 451,678 bp in length with high structural and nucleotide identity to the previously characterized T. aestivum genome. The assembled mitochondrial genome of the (lo) durum and the Ae. longissima were 431,959 bp and 399,005 bp in size, respectively. The high sequence coverage for all three genomes allowed analysis of heteroplasmy within each genome. The mitochondrial genome structure in the alloplasmic line was genetically distant from both maternal and paternal genomes. The alloplasmic durum and the Ae. longissima carry the same versions of atp6, nad6, rps19-p, cob and cox2 exon 2 which are different from the T. turgidum parent. Evidence of paternal leakage was also observed by analyzing nad9 and orf359 among all three lines. Nucleotide search identified a number of open reading frames, of which 27 were specific to the (lo) durum line.

Conclusions

Several heteroplasmic regions were observed within genes and intergenic regions of the mitochondrial genomes of all three lines. The number of rearrangements and nucleotide changes in the mitochondrial genome of the alloplasmic line that have occurred in less than half a century was significant considering the high sequence conservation between the T. turgidum and the T. aestivum that diverged from each other 10,000 years ago. We showed that the changes in genes were not limited to paternal leakage but were sufficiently significant to suggest that other mechanisms, such as recombination and mutation, were responsible. The newly formed ORFs, differences in gene sequences and copy numbers, heteroplasmy, and substoichiometric changes show the potential of the alloplasmic condition to accelerate evolution towards forming new mitochondrial genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-67) contains supplementary material, which is available to authorized users.  相似文献   

8.
Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker.  相似文献   

9.
Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax—a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a “species” DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.  相似文献   

10.
Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution.  相似文献   

11.
Rickettsia are endosymbionts of arthropods, some of which are vectored to vertebrates where they cause disease. Recently, it has been found that some Rickettsia strains harbour conjugative plasmids and others encode some conjugative machinery within the bacterial genome. We investigated the distribution of these conjugation genes in a phylogenetically diverse collection of Rickettsia isolated from arthropods. We found that these genes are common throughout the genus and, in stark contrast to other genes in the genome, conjugation genes are frequently horizontally transmitted between strains. There is no evidence to suggest that these genes are preferentially transferred between phylogenetically related strains, which is surprising given that closely related strains infect similar host species. In addition to detecting patterns of horizontal transmission between diverse Rickettsia species, these findings have implications for the evolution of pathogenicity, the evolution of Rickettsia genomes and the genetic manipulation of intracellular bacteria.  相似文献   

12.

Background

Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed.

Results

We developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103.

Conclusions

The P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.  相似文献   

13.
The use of rrs (16S rRNA) gene is widely regarded as the “gold standard” for identifying bacteria and determining their phylogenetic relationships. Nevertheless, multiple copies of this gene in a genome is likely to give an overestimation of the bacterial diversity. In each of the 50 Streptococcus genomes (16 species, 50 strains), 4–7 copies of rrs are present. The nucleotide sequences of these rrs genes show high similarity within and among genomes, which did not allow unambiguous identification. A genome-wide search revealed the presence of 27 gene sequences common to all the Streptococcus species. Digestion of these 27 gene sequences with 10 type II restriction endonucleases (REs) showed that unique RE digestion in purH gene is sufficient for clear cut identification of 30 genomes belonging to 16 species. Additional gene-RE combinations allowed identification of another 15 strains belonging to S. pneumoniae, S. pyogenes, and S. suis. For the rest 5 strains, a combination of 2 genes was required for identifying them. The proposed strategy is likely to prove helpful in proper detection of pathogens like Streptococcus.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0561-5) contains supplementary material, which is available to authorized users.  相似文献   

14.
It has widely been documented that life form and mating system have significant influences on genetic diversity. In the tribe Triticeae, several genera contain both annual and perennial species, whereas other genera comprise strictly annual or perennial species. It was suggested that Triticeae annuals have originated from Triticeae perennials. The present study aims to analyze nucleotide diversity of Acc-1 gene among different Triticeae genomes, and attempts to link effects of life history (annuals and perennials) and mating systems. The nucleotide diversity of 364 Acc-1 sequences in Triticeae species was characterized. The highest estimates of nucleotide diversity values (π = 0.01919, θ = 0.03515) were found for the Ns genome among the genomes analyzed. Nucleotide diversities in the D genome and Ns genome of polyploids are higher than those in respective genomes of diploids, while in the St genome of polyploids, it is lower than that in the St genome of diploids. The averaged π value (0.013705) in the genomes of perennials is more than twice of the value (0.00508) in the genomes of annuals. The averaged π value (0.01323) in the genomes of outcrossing species is two-fold of the value (0.005664) in the genomes of selfer. Our results suggested that the evolutionary history and mating system may play an important role in determining nucleotide diversity of Acc-1 gene in each genome.  相似文献   

15.

Background

E.coli ST131 is a globally disseminated clone of multi-drug resistant E. coli responsible for that vast majority of global extra-intestinal E. coli infections. Recent global genomic epidemiological studies have highlighted the highly clonal nature of this group of bacteria, however there appears to be inconsistency in some phenotypes associated with the clone, in particular capsule types as determined by K-antigen testing both biochemically and by PCR.

Results

We performed improved quality assemblies on ten ST131 genomes previously sequenced by our group and compared them to a new reference genome sequence JJ1886 to identify the capsule loci across the drug-resistant clone H30Rx. Our data shows considerable genetic diversity within the capsule locus of H30Rx clone strains which is mirrored by classical K antigen testing. The varying capsule locus types appear to be randomly distributed across the H30Rx phylogeny suggesting multiple recombination events at this locus, but that this capsule heterogeneity has little to no effect on virulence associated phenotypes in vitro.

Conclusions

Our data provides a framework for determining the capsular genetics of E. coli ST131 and further beyond to ExPEC strains, and highlights how capsular mosaicism may be an important strategy in becoming a successful globally disseminated human pathogen.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-830) contains supplementary material, which is available to authorized users.  相似文献   

16.
The ITS1-5.8S rDNA-ITS2 regions of 33 accessions belonging to 16 species and five natural and garden interspecific hybrids of the genus Paeonia L. were sequenced. Chromatograms of the peony hybrids demonstrated the presence of the signals, corresponding to two different nucleotides at the positions differing in the parents, indicating that in the hybrids, no rDNA isogenization usually occurred, and they preserved rDNA of both parents. Analysis of these polymorphic sites (PS) showed that P. × majkoae was interspecific hybrid between P. tenuifolia and P. caucasica. The ITS of P. hybrida differs from ITS of P. × majkoae in 19 mutations. Because of this, P. × majkoae is definitely not synonymous to P. hybrida. Comparative analysis of ITS1-5.8S rDNA-ITS2 showed that species diversity in section Paeonia was based on recombination as a result of intraspecific hybridization of three haplotype families. Specifically, haplotypes A, typical of the P. tenuifolia and P. anomala genomes, haplotypes B, typical of P. mlokosewitschii and P. obovata, and haplotypes of family C, currently represented in rDNA of diploid and tetraploid forms of some Caucasian and Mediterranean species. The ITS regions many diploid peonies contain no dimorphic sites, while P. oreogeton, P. cambessedesii, P. rhodia, and P. daurica carry from 10 to 17 PS, and supposed to be the interspecific hybrids. Most of the tetraploid peonies contain from 6 to 18 PS in the ITS regions. These are alloploids with one of the parental genomes similar to that of P. mlokosewitschii (B1), or P. obovata (B3). The second parental genome in P. banatica, P. peregrina, and P. russii is represented by the genome, close to that of P. tenuifolia (A). P. macrophylla, P. mascula, P. coriacea, P. wittmanniana, and P. tomentosa carry genome of series B and genome of series C, which slightly resembles genome A.  相似文献   

17.
18.
Five strains of gram negative bacteria, isolated from soybean (LPPA 221T, 222 and 223) and weeds (LPPA 816 and 1442), were analyzed by a polyphasic approach. The isolates showed variation in their phenotypic traits and were placed in the Pseudomonas fluorescens lineage, based on 16S rRNA gene sequence phylogeny, as a single but well separated cluster. MLSA analysis based on gyrB and rpoD sequences clustered the strains in a single branch in the Pseudomonas syringae group, and revealed P. viridiflava as closest relative. DNA–DNA hybridizations showed medium levels of DNA–DNA relatedness with the type strain of P. viridiflava (50%) and lower levels (<32%) with other type strains of the P. syringae group, supporting classification within a novel species of the genus Pseudomonas. The strains can be distinguished from species of the P. syringae group by the fatty acid C17:0 cyclo that is present in a low amount (2.5%) and from P. viridiflava by their inability to assimilate d-tartrate and d-sorbitol, and by the formation of red colonies on TTC medium. For this new species, the name Pseudomonas asturiensis sp. nov. is proposed. The type strain is LPPA 221T (=LMG 26898T = CECT 8095T).  相似文献   

19.
20.
One of the big operational problems facing laboratories today is the ability to rapidly distinguish between strains of bacteria that, while physiologically distinct, are nearly impossible to separate based on 16S rRNA gene sequence differences. Here we demonstrate that ITS-DGGE provides a convenient approach to distinguishing between closely related strains of Shewanella, some of which were impossible to separate and identify by 16 rRNA gene sequence alone. Examined Shewanella genomes contain 8-11 copies of rrn (ribosomal RNA gene) operons, and variable size and sequence of 16S-23S ITS (intergenic transcribed spacer) regions which result in distinct ITS-DGGE profiles. Phylogenetic constructions based on ITS are congruent with the genomic trees generated from concatenated core genes as well as with those based on conserved indels, suggesting that ITS patterns appear to be linked with evolutionary lineages and physiology. In addition, three new Shewanella strains (MFC 2, MFC 6, and MFC 14) were isolated from microbial fuel cells enriched from wastewater sludge and identified by ITS-DGGE. Subsequent physiological and electrochemical studies of the three isolates confirmed that each strain is phenotypically/genotypically distinct. Thus, this study validates ITS-DGGE as a quick fingerprint approach to identifying and distinguishing between closely related but novel Shewanella ecotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号