首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the comparative 16S rRNA gene sequence analysis of fecal DNAs, we identified one human-, three cow-, and two pig-specific Bacteroides–Prevotella 16S rRNA genetic markers, designed host-specific real-time polymerase chain reaction (real-time PCR) primer sets, and successfully developed real-time PCR assay to quantify the fecal contamination derived from human, cow, and pig in natural river samples. The specificity of each newly designed host-specific primer pair was evaluated on fecal DNAs extracted from these host feces. All three cow-specific and two pig-specific primer sets amplified only target fecal DNAs (in the orders of 9–11 log10 copies per gram of wet feces), showing high host specificity. This real-time PCR assay was then applied to the river water samples with different fecal contamination sources and levels. It was confirmed that this assay could sufficiently discriminate and quantify human, cow, and pig fecal contamination. There was a moderate level of correlation between the Bacteroides–Prevotella group-specific 16S rRNA gene markers with fecal coliforms (r 2 = 0.49), whereas no significant correlation was found between the human-specific Bacteroides 16S rRNA gene with total and fecal coliforms. Using a simple filtration method, the minimum detection limits of this assay were in the range of 50–800 copies/100 ml. With a combined sample processing and analysis time of less than 8 h, this real-time PCR assay is useful for monitoring or identifying spatial and temporal distributions of host-specific fecal contaminations in natural water environments.  相似文献   

2.
Bacteroides spp. represent a prominent bacterial group in human intestinal microbiota with roles in symbiosis and pathogenicity; however, the detailed composition of this group in human feces has yet to be comprehensively characterized. In this study, the molecular diversity of Bacteroides spp. in human fecal microbiota was analyzed from a seven-member, four-generation Chinese family using Bacteroides spp. group-specific 16S rRNA gene clone library analysis. A total of 549 partial 16S rRNA sequences amplified by Bacteroides spp.-specific primers were classified into 52 operational taxonomic units (OTUs) with a 99% sequence identity cut-off. Twenty-three OTUs, representing 83% of all clones, were related to 11 validly described Bacteroides species, dominated by Bacteroides coprocola, B. uniformis, and B. vulgatus. Most of the OTUs did not correspond to known species and represented hitherto uncharacterized bacteria. Relative to 16S rRNA gene universal libraries, the diversity of Bacteroides spp. detected by the group-specific libraries was much higher than previously described. Remarkable inter-individual differences were also observed in the composition of Bacteroides spp. in this family cohort. The comprehensive observation of molecular diversity of Bacteroides spp. provides new insights into potential contributions of various species in this group to human health and disease.  相似文献   

3.
The purpose of this study was to examine host distribution patterns among fecal bacteria in the order Bacteroidales, with the goal of using endemic sequences as markers for fecal source identification in aquatic environments. We analyzed Bacteroidales 16S rRNA gene sequences from the feces of eight hosts: human, bovine, pig, horse, dog, cat, gull, and elk. Recovered sequences did not match database sequences, indicating high levels of uncultivated diversity. The analysis revealed both endemic and cosmopolitan distributions among the eight hosts. Ruminant, pig, and horse sequences tended to form host- or host group-specific clusters in a phylogenetic tree, while human, dog, cat, and gull sequences clustered together almost exclusively. Many of the human, dog, cat, and gull sequences fell within a large branch containing cultivated species from the genus Bacteroides. Most of the cultivated Bacteroides species had very close matches with multiple hosts and thus may not be useful targets for fecal source identification. A large branch containing cultivated members of the genus Prevotella included cloned sequences that were not closely related to cultivated Prevotella species. Most ruminant sequences formed clusters separate from the branches containing Bacteroides and Prevotella species. Host-specific sequences were identified for pigs and horses and were used to design PCR primers to identify pig and horse sources of fecal pollution in water. The primers successfully amplified fecal DNAs from their target hosts and did not amplify fecal DNAs from other species. Fecal bacteria endemic to the host species may result from evolution in different types of digestive systems.  相似文献   

4.
The results of this study support the use of fecal Bacteroidales qPCR as a rapid method to complement traditional, culture-dependent, water quality indicators in systems where drinking water is supplied without chlorination or other forms of disinfection. A SYBR-green based, quantitative PCR assay was developed to determine the concentration of fecal Bacteroidales 16S rRNA gene copies. The persistence of a Bacteroides vulgatus pure culture and fecal Bacteroidales from a wastewater inoculum was determined in unchlorinated drinking water at 10 °C. B. vulgatus 16S rRNA gene copies persisted throughout the experimental period (200 days) in sterile drinking water but decayed faster in natural drinking water, indicating that the natural microbiota accelerated decay. In a simulated fecal contamination of unchlorinated drinking water, the decay of fecal Bacteroidales 16S rRNA gene copies was considerably faster than the pure culture but similar to that of Escherichia coli from the same wastewater inoculum.  相似文献   

5.
We describe an approach for determining the genetic composition of Bacteroides and Prevotella populations in gut contents based on selective amplification of 16S rRNA gene sequences (rDNA) followed by cleavage of the amplified material with restriction enzymes. The relative contributions of different ribotypes to total Bacteroides and Prevotella 16S rDNA are estimated after end labelling of one of the PCR primers, and the contribution of Bacteroides and Prevotella sequences to total eubacterial 16S rDNA is estimated by measuring the binding of oligonucleotide probes to amplified DNA. Bacteroides and Prevotella 16S rDNA accounted for between 12 and 62% of total eubacterial 16S rDNA in samples of ruminal contents from six sheep and a cow. Ribotypes 4, 5, 6, and 7, which include most cultivated rumen Prevotella strains, together accounted for between 20 and 86% of the total amplified Bacteroides and Prevotella rDNA in these samples. The most abundant Bacteroides or Prevotella ribotype in four animals, however, was ribotype 8, for which there is only one known cultured isolate, while ribotypes 1 and 2, which include many colonic Bacteroides spp., were the most abundant in two animals. This indicates that some abundant Bacteroides and Prevotella groups in the rumen are underrepresented among cultured rumen Prevotella isolates. The approach described here provides a rapid, convenient, and widely applicable method for comparing the genotypic composition of bacterial populations in gut samples.  相似文献   

6.
Quantitative PCR (qPCR) assays targeting the host-specific Bacteroides-Prevotella 16S rRNA genetic markers have been proposed as one of the promising approaches to identify the source of fecal contamination in environmental waters. One of the concerns of qPCR assays to environmental samples is the reliability of quantified values, since DNA extraction followed by qPCR assays are usually performed without appropriate sample process control (SPC) and internal amplification controls (IACs). To check the errors in sample processing and improve the reliability of qPCR results, it is essential to evaluate the DNA recovery efficiency and PCR amplification efficiency of the target genetic markers and correct the measurement results. In this study, we constructed a genetically-engineered Escherichia coli K12 strain (designated as strain MG1655 Δlac::kan) as sample process control and evaluated the applicability to environmental water samples. The recovery efficiency of the SPC strain MG1655 Δlac::kan was similar to that of Bacteroides fragilis JCM 11019, when DNA were extracted from water samples spiked with the two bacteria. Furthermore, the SPC was included in the qPCR assays with propidium monoazide (PMA) treatment, which can exclude the genetic markers from dead cells. No significant DNA loss was observed in the PMA treatment. The inclusion of both the SPC (strain MG1655 Δlac::kan) and IAC in qPCR assays with PMA treatment gave the assurance of reliable results of host-specific Bacteroides-Prevotella 16S rRNA genetic markers in environmental water samples.  相似文献   

7.
BacteroidesPrevotella group is one of the most promising targets for detecting fecal contamination in water environments, principally due to its host-specific distributions and high concentrations in feces of warm-blooded animals. We developed real-time PCR assays for quantifying chicken/duck-, chicken-, and duck-associated BacteroidesPrevotella 16S rRNA genetic markers (Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac). A reference collection of DNA extracts from 143 individual fecal samples and wastewater treatment plant influent was tested by the newly established markers. The quantification limits of Chicken/Duck-Bac, Chicken-Bac, and Duck-Bac markers in environmental water were 54, 57, and 12 copies/reaction, respectively. It was possible to detect possible fecal contaminations from wild ducks in environmental water with the constructed genetic marker assays, even though the density of total coliforms in the identical water samples was below the detection limit. Chicken/Duck-Bac marker was amplified from feces of wild duck and chicken with the positive ratio of 96 and 61 %, respectively, and no cross-reaction was observed for the other animal feces. Chicken-Bac marker was detected from 70 % of chicken feces, while detected from 39 % of cow feces, 8.3 % of pig feces, and 12 % of swan feces. Duck-Bac marker was detected from 85 % of wild duck feces and cross-reacted with 31 % of cow feces. These levels of detection specificity are common in avian-associated genetic markers previously proposed, which implies that there is a practical limitation in the independent application of avian-associated BacteroidesPrevotella 16S rRNA genetic markers and a combination with other fecal contamination markers is preferable for detecting fecal contamination in water environments.  相似文献   

8.
Next generation sequencing technologies for in depth analyses of complex microbial communities rely on rational primer design based on up-to-date reference databases. Most of the 16S rRNA-gene based analyses of environmental Archaea community composition use PCR primers developed from small data sets several years ago, making an update long overdue. Here we present a new set of archaeal primers targeting the 16S rRNA gene designed from 8500 aligned archaeal sequences in the SILVA database. The primers 340F-1000R showed a high archaeal specificity (< 1% bacteria amplification) covering 93 and 97% of available sequences for Crenarchaeota and Euryarchaeota respectively. In silico tests of the primers revealed at least 38% higher coverage for Archaea compared to other commonly used primers. Empirical tests with clone libraries confirmed the high specificity of the primer pair to Archaea in three biomes: surface waters in the Arctic Ocean, the pelagic zone of a temperate lake and a methanogenic bioreactor. The clone libraries featured both Euryarchaeota and Crenarchaeota in variable proportions and revealed dramatic differences in the archaeal community composition and minimal phylogenetic overlap between samples.  相似文献   

9.
In the light of the poor culturability of Acidobacteria and Verrucomicrobia species, group-specific real-time (qPCR) systems were developed based on the 16S rRNA gene sequences from culturable representatives of both groups. The number of DNA targets from three different groups, i.e. Holophagae (Acidobacteria group 8) and Luteolibacter/Prosthecobacter and unclassified Verrucomicrobiaceae subdivision 1, was determined in DNA extracts from different leek (Allium porrum) rhizosphere soil compartments and from bulk soil with the aim to determine the distribution of the three bacterial groups in the plant-soil ecosystem. The specificity of the designed primers was evaluated in three steps. First, in silico tests were performed which demonstrated that all designed primers 100% matched with database sequences of their respective groups, whereas lower matches with other non-target bacterial groups were found. Second, PCR amplification with the different primer sets was performed on genomic DNA extracts from target and from non-target bacteria. This test demonstrated specificity of the designed primers for the target groups, as single amplicons of expected sizes were found only for the target bacteria. Third, the qPCR systems were tested for specific amplifications from soil DNA extracts and 48 amplicons from each primer system were sequenced. All sequences were > 97% similar to database sequences of the respective target groups. Estimated cell numbers based on Holophagae-, Luteolibacter/Prosthecobacter- and unclassified Verrucomicrobiaceae subdivision 1-specific qPCRs from leek rhizosphere compartments and bulk soils demonstrated higher preference for one or both rhizosphere compartments above bulk soil for all three bacterial groups.  相似文献   

10.
Gram-negative, facultatively anaerobic bacteria were isolated from symptomatic oak tissue in the UK and USA. Partial gyrB sequencing placed ten strains in the genus Brenneria, with B. goodwinii as the closest phylogenetic relative. The strains were investigated further using a polyphasic approach including MLSA (based on partial gyrB, rpoB, infB and atpD gene sequences), 16S rRNA gene sequencing, DNA–DNA relatedness studies and both phenotypic and chemotaxonomic assays. The MLSA and 16S rRNA gene analyses separated the strains into two groups based on origin, suggesting that they belong to Brenneria as two novel species. However, the DNA–DNA relatedness values revealed a closer relationship between the groups and indicated that they should belong to the same species. As the two groups of strains from the UK and USA can be differentiated from each other phenotypically and by ERIC PCR fingerprints, it is proposed to classify them as novel subspecies of a novel Brenneria species. The name Brenneria roseae sp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) is proposed, with Brenneria roseae subsp. roseae ssp. nov. (FRB 222T = LMG 27714T = NCPPB 4581T) for the strains from the UK and Brenneria roseae subsp. americana ssp. nov. (FRB 223T = LMG 27715T = NCPPB 4582T) for the strains from the USA.  相似文献   

11.
Partial gyrB sequences (>1 kb) were obtained from 34 type strains of the genus Amycolatopsis. Phylogenetic trees were constructed to determine the effectiveness of using this gene to predict taxonomic relationships within the genus. The use of gyrB sequence analysis as an alternative to DNA–DNA hybridization was also assessed for distinguishing closely related species. The gyrB based phylogeny mostly confirmed the conventional 16S rRNA gene-based phylogeny and thus provides additional support for certain of these 16S rRNA gene-based phylogenetic groupings. Although pairwise gyrB sequence similarity cannot be used to predict the DNA relatedness between type strains, the gyrB genetic distance can be used as a means to assess quickly whether an isolate is likely to represent a new species in the genus Amycolatopsis. In particular a genetic distance of >0.02 between two Amycolatopsis strains (based on a 315 bp variable region of the gyrB gene) is proposed to provide a good indication that they belong to different species (and that polyphasic taxonomic characterization of the unknown strain is worth undertaking). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The GenBank accession numbers for the gyrB gene sequences obtained in this study are shown in Table 1.  相似文献   

12.
We performed a comprehensive phylogenetic analysis of the phylum Acidobacteria and developed novel, group-specific PCR primers for Acidobacteria and its class-level subgroups. Acidobacterial 16S rRNA gene sequences deposited in the RDP database were used to construct a local database then subsequently analyzed. A total of 556 phylotypes were observed and the majority of the phylotypes belonged to five major subgroups (subgroups 1, 2, 3, 4, and 6), which comprised > 80% of the acidobacterial sequences in the RDP database. Phylum-specific and subgroup-specific primers were designed from the consensus sequences of the phylotype sequences, and the specificities of the designed primers were evaluated both in silico and empirically for coverage and tolerance. The phylum-specific primer ACIDO, which was designed in this study, showed increased coverage for Acidobacteria, as compared to the previous phylum-specific primer 31F. However, the tolerance of the primer ACIDO for non-target sequences was slightly higher than that of the primer 31F. We also developed subgroup-specific PCR primers for the major subgroups of Acidobacteria, except for subgroup 4. Subgroup-specific primers S1, S2, and S3, which targeted subgroups 1, 2, and 3, respectively, showed high coverage for their target subgroups and low tolerance for non-target sequences. However, the primer S6 targeting subgroup 6 showed a lower specificity in its empirical evaluation than expected from the in silico results. The subgroup-specific primers, as well as the phylum-specific primer designed in this study, will be valuable tools in understanding the phylogenetic diversity and ecological niche of the phylum Acidobacteria and its subgroups.  相似文献   

13.
The alkB gene encodes for alkane 1-monooxygenase, which is a key enzyme responsible for the initial oxidation of inactivated alkanes. This functional gene can be used as a marker to assess the catabolic potential of bacteria in bioremediation. In the present study, a pair of primers was designed based on the conserved regions of the AlkB amino acid sequences of Actinobacteria, for amplifying the alkB gene from the genus Gordonia (20 Gordonia strains representing 13 species). The amplified alkB genes were then sequenced and analyzed. In the phylogenetic tree based on the translated AlkB amino acid sequences, all the Gordonia segregated clearly from other closely related genera. The sequence identity of the alkB gene in Gordonia ranged from 58.8% to 99.1%, which showed higher sequence variation at the inter-species level compared with other molecular markers, such as the 16S rRNA gene (93.1–99.8%), gyrB gene (77.5–97.3%) or catA gene (72.4–99.5%). The genetic diversity of four selected loci also showed that the alkB gene might have evolved faster than rrn operons, as well as the gyrB or catA genes, in Gordonia. All the available actinobacterial alkB gene sequences derived from the whole genome shotgun sequencing projects are phylogenetically characterized here for the first time, and they exclude the possibility of horizontal gene transfer of the alkB gene in these bacterial groups.  相似文献   

14.
In 2010, cream-coloured, Gram-negative staining, facultatively anaerobic enterobacteria were isolated from a single black oak tree (Quercus kelloggii) exhibiting decline symptoms in southern California, USA. These 12 isolates were tentatively identified as Gibbsiella quercinecans based on partial gyrB sequencing. Closer examination of the strains using multilocus sequence analysis, based on partial sequences of gyrB, rpoB, infB and atpD genes, and almost complete 16S rRNA gene sequencing suggested that the isolates belong to a novel taxon within the genus Gibbsiella with G. quercinecans as their closest phylogenetic relative. DNA–DNA relatedness studies confirmed that the strains belong to a single taxon in Gibbsiella, which can be differentiated from other members of the genus by several phenotypic traits. Therefore, the name Gibbsiella greigii sp. nov. is proposed for this novel species isolated from symptomatic Q. kelloggii in the USA with FRB 224T (=LMG 27716T = NCPPB 4583T) as the type strain.  相似文献   

15.
Several novel N2-fixing Burkholderia species associated with plants, including legume-nodulating species, have recently been discovered. Presently, considerable interest exists in studying the diazotrophic Burkholderia species, both for their ecology and their great potential for agro-biotechnological applications. However, the available methods used in the identification of these Burkholderia species are time-consuming and expensive. In this study, PCR species-specific primers based on the 16S rRNA gene were designed, which allowed rapid, easy, and correct identification of most known N2-fixing Burkholderia. With this approach, type and reference strains of Burkholderia kururiensis, B. unamae, B. xenovorans, B. tropica, and B. silvatlantica, as well as the legume-nodulating B. phymatum, B. tuberum, B. mimosarum, and B. nodosa, were unambiguously identified. In addition, the PCR species-specific primers allowed the diversity of the diazotrophic Burkholderia associated with field-grown tomato and sorghum plants to be determined. B. tropica and B. xenovorans were the predominant species found in association with tomato, but the occurrence of B. tropica with sorghum plants was practically exclusive. The efficiency of the species-specific primers was validated with the detection of B. tropica and B. xenovorans from DNA directly recovered from tomato rhizosphere soil samples. Additionally, using PCR species-specific primers, all of the legume-nodulating Burkholderia were correctly identified, even from single nodules collected from inoculated common bean plants. These primers could contribute to rapid identification of the diazotrophic and nodulating Burkholderia species associated with important crop plants and legumes, as well as revealing their environmental distribution.  相似文献   

16.
In this paper we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Spain and Morocco from root nodules of Retama sphaerocarpa and Retama monosperma. All the strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium lablabi CCBAU 23086T, with 99.41% identity with respect to the strain Ro19T. Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII were divergent in Ro19T and B. lablabi CCBAU 23086T, with identity values of 95.71%, 93.75% and 93.11%, respectively. These differences were congruent with DNA–DNA hybridization analysis that revealed an average of 35% relatedness between the novel species and B. lablabi CCBAU 23086T. Also, differential phenotypic characteristics of the new species were found with respect to the already described species of Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose to classify the group of strains isolated from R. sphaerocarpa and R. monosperma as a novel species named Bradyrhizobium retamae sp. nov. (type strain Ro19T = LMG 27393T = CECT 8261T). The analysis of symbiotic genes revealed that some of these strains constitute a new symbiovar within genus Bradyrhizobium for which we propose the name “retamae”, that mainly contains nodulating strains isolated from Retama species in different continents.  相似文献   

17.
Host-specific Bacteroides–Prevotella 16S rRNA genetic markers are promising alternative indicators for identifying the sources of fecal pollution because of their high abundance in the feces of warm-blooded animals and high host specificity. However, little is known about the persistence of these genetic markers in environments after being released into environmental waters. The persistence of feces-derived four different host-specific Bacteroides–Prevotella 16S rRNA genetic makers (total, human-, cow-, and pig-specific) in environmental waters was therefore investigated at different incubation temperatures (4, 10, 20, and 30°C) and salinities (0, 10, 20, and 30 ppt) and then compared with the survival of conventional fecal-indicator organisms. The host-specific genetic markers were monitored by using real-time polymerase chain reaction (PCR) assays with specific primer sets. Each host-specific genetic marker showed similar responses in non-filtered river water and seawater: They persisted longer at lower temperatures and higher salinities. In addition, these markers did not increase in all conditions tested. Decay rates for indicator organisms were lower than those for host-specific genetic markers at temperature above 10°C. Furthermore, we investigated whether the PCR-detectable 16S rRNA genetic markers reflect the presence of live target cells or dead target cells in environmental waters. The result revealed that the detection of the Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters mainly reflected the presence of ‘viable but non-culturable’ Bacteroides–Prevotella cells. These findings indicate that seasonal and geographical variations in persistence of these host-specific Bacteroides–Prevotella 16S rRNA genetic markers must be considered when we use them as alternative fecal indicators in environmental waters.  相似文献   

18.
Four species of marine purple sulfur bacteria of the genus Marichromatium have been validly described. A recent re-analysis of the 16S rRNA-based similarity and genomic DNA–DNA hybridizations (DDH) of the type strains [33] suggested that some of them are so closely related that they can be considered heterotypic synonyms. Here, we report on the evaluation of the multilocus sequence analysis approach (MLSA) for nine Marichromatium strains in order to resolve their intrageneric genealogical relationships. MLSA was based on six protein-coding genes (gyrB, recA, fusA, dnaK, pufM, and soxB), and the results were comparable to DDH. The phylogenetic tree constructed with the concatenated sequences, which also included the 16S rRNA gene and the internal transcriber spacer ITS region (4331 bp), separated the nine strains in four lineages that reflected the four Marichromatium species. The reconstructed phylogenetic tree based on concatenation of six protein-coding genes was also highly congruent with the tree topology based on the 16S rRNA gene.  相似文献   

19.
Freshwater snails of the family Lymnaeidae are the intermediate hosts of the liver fluke Fasciola worldwide. While distinct species have been identified at the molecular level in other parts of the world such data have not been published for Thailand. In this study we collected Lymnaeidae from different localities across Thailand and analyzed their 16S rDNA sequences as a molecular signature for classification. In addition to the ubiquitous Radix rubiginosa, we have confirmed the presence of Austropeplea viridis and Radix swinhoei, for the latter of which the ribosomal rDNA sequences are reported for the first time, in North-Thailand. Based on the obtained 16S rDNA data three primer pairs were designed that allowed rapid identification of these snail species by PCR. To determine their infection status, PCR primers for F.gigantica cathepsin L were used in parallel with the snail 16S rDNA species-specific primers in multiplex PCR analyses. Western blot analysis of total snail protein with a monoclonal anti-F.gigantica cathepsin L antibody confirmed positive cathepsin L PCR results. The developed diagnostic PCR will be of use in risk assessment for transmission of fascioliasis in Thailand.  相似文献   

20.
Molecular methods for quantifying defined Bacteroidales species from the human gastrointestinal tract may have important clinical and environmental applications, ranging from diagnosis of infections to fecal source tracking in surface waters. In this study, sequences from the V2 region of the small subunit ribosomal RNA gene were targeted in the development of qPCR assays to quantify DNA from six Bacteroides and one Prevotella species. In silico and experimental analyses suggested that each of the assays was highly discriminatory in detecting DNA from the intended species. Analytical sensitivity, precision and ranges of quantification were demonstrated for each assay by coefficients of variation of less than 2% for cycle threshold measurements over a range from 10 to 4 × 104 target sequence copies. The assays were applied to assess the occurrence and relative abundance of their target sequences in feces from humans and five animal groups as well as in 14 sewage samples from 13 different treatment facilities. Sequences from each of the species were detected at high levels (>103 copies/ng total extracted DNA) in human wastes. Sequences were also detected by each assay in all sewage samples and, with exception of the Prevotella sequences, showed highly correlated (R2 ≥ 0.7) variations in concentrations between samples. In contrast, the occurrence and relative abundance profiles of these sequences differed substantially in the fecal samples from each of the animal groups. These results suggest that analyses for multiple individual Bacteroidales species may be useful in identifying human fecal pollution in environmental waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号