首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Structural changes in the chloroplast membranes caused by acidification and heat-treatment are studied by observing the changes in the fluorescence of ANS bound to thylakoid membranes. On addition of acids to buffered suspension of isolated pea chloroplasts, the fluorescence intensity of bound ANS shows a sigmoidal rise on reaching a pH value of about 4.5. A part of the fluorescence enhancement of bound ANS brought about by protons is not reversible on back titration with alkali. The reversible part of acid induced rise in ANS fluorescence possibly reflects structural changes expected to be associated with photophosphorylation. Divalent cations enhance the fluorescence of ANS bound to chloroplasts between a pH range 4.5–7.0 but diminish it if the pH is below 4.5.Addition of acid to heat-treated chloroplasts shows similar sigmoidal rise in ANS fluorescence intensity on lowering the pH to about 4.5. On addition of acid upto a pH of 3.1, the ANS fluorescence is greater than that of untreated chloroplasts, however, at pH below 3.1, the fluorescence of bound ANS is lower than the control chloroplasts. This observation indicates that heat-treatment caused some alteration of the microstructure of thylakoid membranes of chloroplasts besides the usual loss in the O2 evolving capacity.This is further confirmed from the studies of Hill-activity and ANS binding to chloroplasts incubated at various temperatures in the absence and presence of aliphatic alcohol. Hill-activity (DCPIP reduction) of chloroplasts incubated at temperatures between 25 C and 55 C first increases reaching a maximum at 45 C and then declines rather sharply, when the chloroplasts are heated beyond 45 C (Tmax). The presence of 200 mM n-butyl alcohol or 40 mM n-amyl alcohol during the warming treatment lowers the temperature by 8 C at which the decline in the Hill-activity is observed. An enhancement in the fluorescence intensity and a blue shift of the emission spectrum of bound ANS are noted if the chloroplasts are heated beyond the Tmax either in absence or presence of alcohol. The changes in the fluorescence of ANS bound to heat-treated chloroplasts plausibly reflect the nature of the structural changes in chloroplasts during the heating upto 55 C.Abbreviations ANS 1-anilino-8-naphthalene sulphonate - DCPIP 2,6-dichlorophenol indophenol  相似文献   

3.
Electron spin resonance (ESR) spectra of stearic acid spin labels incorporated into spinach thylakoids can be used to monitor membrane changes during freezing. Changes in the ESR parameters can be directly correlated to the extent of functional freeze damage. Freeze-induced changes in the ESR parameters strongly depend on the osmotic conditions of the incubation medium. Similar changes as on freezing can be observed by transferring thylakoids from an isotonic to a hypotonic medium, i.e., by swelling osmotically flattened thylakoids. This and computer simulations of spin label ESR spectra, which allow for variation of vesicle shape, lead to the conclusion that freeze-induced ESR spectral changes are due to swelling of the thylakoids. Indeed, van't Hoff plots of thylakoid packed volume indicate a freeze-induced increase in the apparent number of osmotically active molecules within the intrathylakoid lumen. During freezing, salt and/or sugar leak into the lumen. Simultaneously, proton channels are irreversibly opened. As the structural alterations obtained upon freezing are not accompanied by a change in bulk fluidity, these data are interpreted in terms of a local action of cryotoxic agents on critical microstructures, possibly at the rims of the thylakoid membranes.  相似文献   

4.
5.
Effects of the ionophore A23187 on isolated broken and intact chloroplasts in the pH range of 6.2 to 7.6 have been studied. In both types of chloroplasts, uncoupling of photosynthetic electron transport by A23187 (6–10 μm) was mediated either by Mg2+ or—in the absence of divalent cations (i.e., when EDTA was added to the medium)—by high concentrations of Na+, but not of K+ ions. At increased concentrations of the ionophore (above about 10 μm) and high pH (7.2 to 7.6), uncoupling in broken chloroplasts was also mediated by K+ ions. The inhibition of the energy-dependent slow decline of chlorophyll fluorescence in intact chloroplasts by the ionophore (which denotes uncoupling) is reversed by EDTA in the presence of K+, but not of Na+ ions. In 3-(3′,4′-dichlorophenyl)1,1-dimethylurea-poisoned intact chloroplasts, the yield of variable chlorophyll fluorescence is lowered by A23187 + EDTA and increased again by addition of NaCl or KCl. Chlorophyll fluorescence spectra at 77 °K of intact chloroplasts incubated with A23187 + EDTA indicated that the distribution of excitation energy had changed in favor of photosystem I, as expected from a depletion of Mg2+. This change was reversed by MgCl2+, KCl, or NaCl. From a comparison of low-temperature fluorescence spectra of broken and intact chloroplasts at different levels of Mg2+ in the medium, the concentration of free Mg2+ in the stroma of the intact chloroplasts at pH 7.6 in the dark was estimated at 1 to 4 mm. The results show that in chloroplasts the specificity of A23187 for divalent cations is limited. In the presence of EDTA, the ionophore mediates fast Na+H+ exchange across thylakoid membranes, whereas K+ is transferred much less efficiently. Both Na+ and K+ ions seem to be transported readily across the chloroplast envelope by the action of the ionophore, leading to an exchange of Mg2+ for monovalent cations at the thylakoid membrane surfaces in intact chloroplasts.  相似文献   

6.
C.J. Arntzen  C.L. Ditto 《BBA》1976,449(2):259-274
When isolated chloroplasts from mature pea (Pisum sativum) leaves were treated with digitonin under “low salt” conditions, the membranes were extensively solubilized into small subunits (as evidenced by analysis with small pore ultrafilters). From this solubilized preparation, a photochemically inactive chlorophyll · protein complex (chlorophyll ab ratio, 1.3) was isolated. We suggest that the detergent-derived membrane fragment from mature membranes is a structural complex within the membrane which contains the light-harvesting chlorophyll ab protein and which acts as a light-harvesting antenna primarily for Photosystem II.Cations dramatically alter the structural interaction of the light-harvesting complex with the photochemically active system II complex. This interaction has been measured by determining the amount of protein-bound chlorophyll b and Photosystem II activity which can be released into dispersed subunits by digitonin treatment of chloroplast lamellae. When cations are present to cause interaction between the Photosystem II complex and the light-harvesting pigment · protein, the combined complexes pellet as a “heavy” membranous fraction during differential centrifugation of detergent treated lamellae. In the absence of cations, the two complexes dissociate and can be isolated in a “light” submembrane preparation from which the light-harvesting complex can be purified by sucrose gradient centrifugation.Cation effects on excitation energy distribution between Photosystems I and II have been monitored by following Photosystem II fluorescence changes under chloroplast incubation conditions identical to those used for detergent treatment (with the exception of chlorophyll concentration differences and omission of detergents). The cation dependency of the pigment · protein complex and Photosystem II reaction center interactions measured by detergent fractionation, and regulation of excitation energy distribution as measured by fluorescence changes, were identical. We conclude that changes in substructural organization of intact membranes, involving cation induced changes in the interaction of intramembranous subunits, are the primary factors regulating the distribution of excitation energy between Photosystems II and I.  相似文献   

7.
Effects of various metal cations and polyamines on aggregation and fusion of phosphatidylserine vesicles and their associated physicochemical properties (such as surface tension and vesicle electrophoretic mobility) have been studied. It was found that metal polycations and hydrogen ion caused an increase in the surface tension of a phosphatidylserine monolayer, whereas the polyamines and other monovalent cations did not increase the surface tension of the membrane appreciably. All cations used affected the vesicle mobility roughly in the order of the number of their valencies and linearly with respect to the logarithm of their concentrations of ions; vesicle surface charge densities are reduced by adsorption and screening of the counter ions depending on their valencies and concentrations. The degree of aggregation of lipid vesicles parallels somewhat that of the reduction of vesicle electrophoretic mobilities. However, the degree of membrane fusion induced by these cations parallels that of the increase in surface tension of the membranes induced by these cations.  相似文献   

8.
Proteomics is a very powerful approach to link the information contained in sequenced genomes, like Arabidopsis, to the functional knowledge provided by studies of plant cell compartments, such as chloroplast envelope membranes. This review summarizes the present state of proteomic analyses of highly purified spinach and Arabidopsis envelope membranes. Methods targeted towards the hydrophobic core of the envelope allow identifying new proteins, and especially new transport systems. Common features were identified among the known and newly identified putative envelope inner membrane transporters and were used to mine the complete Arabidopsis genome to establish a virtual plastid envelope integral protein database. Arabidopsis envelope membrane proteins were extracted using different methods, that is, chloroform/methanol extraction, alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to the less hydrophobic ones. Mass spectrometry analyses lead to the identification of more than 100 proteins. More than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are (a) involved in ion and metabolite transport, (b) components of the protein import machinery and (c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism or in responses to oxidative stress, were associated with envelope membranes. Almost one third of the newly identified proteins have no known function. The present stage of the work demonstrates that a combination of different proteomics approaches together with bioinformatics and the use of different biological models indeed provide a better understanding of chloroplast envelope biochemical machinery at the molecular level.  相似文献   

9.
10.
11.
12.
A chloroplast preparation was extracted from squash (Cucurbita pepo (L.) var. Senator). Enrichment of intact chloroplasts was achieved by continuous free-flow electrophoresis. The addition of monoterpenes, detergent and free fatty acids changed the elecrophoretic separation pattern characteristically. Monoterpene-dependent degradation of envelope membranes could be prevented by addition of -tocopherol prior to monoterpene incubation.Photosynthetic electron transport of photosystem II was completely inhibited by -pinene, Triton X-100 and linolenic acid. Inhibition could be modulated by addition of -tocopherol or lecithin (phosphatidylcholine) either before or after inhibition by monoterpenes and detergent.Percentage reconstitution of photosynthetic electron transport inhibited by -pinene depended on light conditions and incubation time.  相似文献   

13.
Washed chloroplast membranes from romaine lettuce leaves were treated with the cross-linking reagent dimethyladipimidate (DMA) for various periods of time and subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparative examination of the electrophoretic profiles from control and treated membranes revealed that the light-harvesting chlorophyll-protein complex (LHCPC) was readily cross-linked to yield “dimers” and “oligomers” of higher molecular weight. Two polypeptides, of 25 and 23 kilodaltons, previously identified as two subunits of the LHCPC, were the major cross-linked species; other peptides were also cross-linked, but to a much lesser extent. These results suggest that cross-linking of chloroplast membranes with DMA, under our conditions, occurs primarily among the components of the LHCPC. We also measured the photosystem II activity in control and DMA-treated chloroplasts and found no impairment of this photochemical activity in the cross-linked chloroplasts as compared with controls.  相似文献   

14.
Summary In this paper we report that Tween-20 (polyoxethylene sorbitan monolaurate) preferentially disrupts granal thylakoids along their lateral margins. With this disruption the adherent, partition membranes are released and do not tend to vesiculate. The opening of grana at the margins permits the entry of binding agents, such as cationic ferritin, to label the internal, locular surface of the granal thylakoids.  相似文献   

15.
The oxygen-evolving complex (OEC) of plants is the main energy-transforming structure of chloroplast membranes, in which light energy is used for photosynthetic oxidation of intracellular water and oxygen formation. The conducted research has resulted in isolation of functionally active OEC of higher plants and elucidation of its molecular composition, photochemical properties and structural organization. The OEC has been revealed to represent the dimer of the pigment-lipoprotein complexes of photosystem 2 (PLPC PS-2) associated in a chloroplast membrane according to the mirror symmetry rule into an integrate structure based on hydrophobic bonds. The model has been developed for the structure of the dimeric complex of PS-2 that has the function of oxygen formation. This model was confirmed by the X-ray analysis of crystals of the dimeric complex of PS-2. The concept about the fact that the “hydrophobic boiler” determining the formation of the water-oxidizing center of the OEC is formed in the area of association of the reaction centers of monomeric PLPCs PS-2 was advanced based on the regularities of change in the functional activity of the OEC under the action of stress-factors. The new scheme has been advanced for the two-anode organization of the water-oxidizing center as the main condition for realizing the process of molecular oxygen formation. The mechanism of the process of photosynthetic water oxidation and molecular oxygen formation has been developed based on the experimental data about the structural organization of the OEC and its water-oxidizing center. The quantum-chemical modeling of the process showed that its course corresponds to the mechanism suggested.  相似文献   

16.
17.
18.
19.
Envelope- and stroma-free thylakoid membranes of Vicia faba chloroplasts were incubated with trypsin or pronase for several hours. The indigestible residue was analyzed by polyacrylamide gel electrophoresis. Trypsinization resulted in a complete digestion of all proteins with the exception of the pigment-protein complexes as well as a polypeptide not yet characterized. Yet, as compared with untreated material, Complex II was found to have higher electrophoretic mobility. Electron-microscopic studies illustrate that the indigestible residue still has a preserved membrane structure. Disintegration of the thylakoid membranes by sodium dodecyl sulfate followed by trypsinization also resulted in the two complexes while all the other proteins were found to be digested. However, after removal of the lipids the protein moieties of the complexes proved to be easily digestible. From these results it is concluded that pigment-protein interaction may be an important factor in maintaining a conformation rather resistant to perturbants and proteases. In contrast to trypsin, pronase completely digested the polypeptides of the thylakoid membranes including the protein moieties of the pigment-protein complexes leaving an amorphous lipid mass. The results support the assumption that the complexes are necessary to maintain the membrane structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号