首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature and moist period on the onset of sporangia production by Phytophthora ramorum on Rhododendron ‘Cunningham's White’ was examined with misted detached leaves held in humid chambers. Following wound inoculation with sporangia, leaves were pre‐incubated at 20°C for either 24 or 72 h prior to placement at six different temperatures (4, 10, 15, 20, 25 and 30°C). The overall mean moist period required for first occurrence of sporulation over all six temperatures was 3.24 days with the 24‐h pre‐incubation time, compared with 1.49 days for the 72‐h pre‐incubation time. Following 24 h pre‐incubation at 20°C and at an incubation temperature of 15°C, sporangia were first collected from leaves following a 24 h incubation. At 10 and 20°C, sporangia were first collected after 48 h, whereas at 4, 25 and 30°C, sporangia were first collected after 3 days. Following 72 h pre‐incubation at 20°C, sporulation generally occurred within 1 day, even at temperatures such at 4 and 30°C that are suboptimal for sporulation. The highest levels of P. ramorum sporulation were observed at 20°C. P. ramorum formed sporangia on host tissue under moist conditions within the same time frame reported for P. phaseoli, P. palmivora and P. nicotianae, but substantially more slowly than certain other species such as P. infestans. Quantifying moisture and temperature conditions for initiation of sporangia production provides knowledge which leads to a greater understanding of the epidemic potential of P. ramorum.  相似文献   

2.
The effect of temperature and light conditions (spectral quality, intensity and photoperiod) on germination, development and conidiation of tomato powdery mildew (Oidium neolycopersici) on the highly susceptible tomato cv. Amateur were studied. Conidia germinated across the whole range of tested temperatures (10–35°C); however, at the end‐point temperatures, germination was strongly limited. At temperatures slightly lower than optimum (20–25°C), mycelial development and time of appearance of the first conidiophores was delayed. Conidiation occurred within the range of 15–25°C, however was most intense between 20–25°C. Pathogen development was also markedly influenced by the light conditions. Conidiation and mycelium development was greatest at light intensities of approximately 60 μmol/m2 per second. At lower intensities, pathogen development was delayed, and in the dark, conidiation was completely inhibited. A dark period of 24 h after inoculation had no stimulatory effect on later mycelium development. However, 12 h of light after inoculation, followed by continuous dark, resulted in delayed mycelium development and total restriction of pathogen conidiation (evaluated 8 days postinoculation). When a longer dark period (4 days) was followed by normal photoperiod (12 h/12 h light/dark), mycelium development accelerated and the pathogen sporulated normally. When only inoculated leaf was covered with aluminium foil while whole plant was placed in photoperiod 12 h/12 h, the intensive mycelium development and slight subsequent sporulation on covered leaf was recorded.  相似文献   

3.
Sporulation in A. brassicae and A. brassicicola on naturally-infected leaf discs of oilseed rape and cabbage required humidities equal to or higher than 91.5% and 87% r.h. respectively. The optimum temperatures for sporulation were 18–24°C for A. brassicae and 20–30°C for A. brassicicola at which temperatures both fungi produced spores in 12–14 h. Above 24°C sporulation in A. brassicae was inhibited. At sub-optimal temperatures sporulation times for A. brassicicola were significantly longer than for A. brassicae with the differences increasing with decrease in temperature. Interrupting a 16-h wet period at 20°C with a period of 2 h at 70% or 80% r.h. did not affect sporulation in either fungus but a dry interruption of 3–4 h inhibited sporulation in both. Exposure of both fungi to alternating wet (18 h at 100% r.h., 20°C) and dry periods (6 or 30 h at 5565% r.h., 20°C) did not affect the concentration of spores produced in each wet period. Sporulation times were not affected by either the host type of the age of the host tissue. White light (136 W/m2) inhibited sporulation in A. brassicae with the degree of inhibition increasing with increasing light intensity. The effect of light on sporulation in A. brassicicola was not tested.  相似文献   

4.
Sporangia of three isolates of Phytophthora ramorum representing three different clonal lineages were subjected to relative humidity (RH) levels between 80 and 100% for exposure periods ranging from 1 to 24 h at 20°C in darkness. Plastic containers (21.5 × 14.5 × 5 cm) were used as humidity chambers with 130 ml of glycerine solution added to each container. Glycerine concentrations corresponded to 100, 95, 90, 85 and 80% RH based on refractive index measurements. Sporangia suspensions were pipeted onto nitrile mesh squares (1.5 × 1.5 cm, 15 micron pore size) which were placed in the humidity chambers and incubated at 20°C in darkness. Following exposure periods of 1, 2, 4, 8, 12 and 24 h, mesh squares were inverted onto Petri dishes of selective medium and sporangia germination assessed after 24 and 48 h. At 100% RH, we observed a mean value of 88% germination after 1 h exposure declining to 18% germination following 24 h incubation. At 95% RH, a steeper decline in germination was noted, with means ranging from 79% at 1 h to less than 1% at 24 h exposure. At 90% RH, no germination was noted after 8 or more h exposure, and values were 57%, 22% and 3% germination for the 1, 2 and 4 h exposures, respectively. Germination was only observed at 1 h exposure for both the 85% RH treatment (52% germination) and the 80% RH treatment (38% germination). The three isolates responded similarly over the range of RH values tested. The germination response of P. ramorum sporangia to RH values between 80% and 100% was comparable to that reported for other Phytophthora species. Knowledge of conditions that affect Pramorum sporangia germination can shed light on pathogenesis and epidemic potential and lead to improved control recommendations.  相似文献   

5.
Laboratory experiments on sugar-beet downy mildew (Peronospora farinosa)   总被引:1,自引:0,他引:1  
The optimum conditions for Peronospora farinosa betae to produce spores were temperature 8–10 °C and relative humidity 90 % or more, but many spores were produced between 5 and 20 °C and between 80 and 90 % R.H. Most spores were formed in darkness after leaves were exposed to light for 6–8 h. Spores survived exposure to 60 % R.H. for up to 5 days, but were soon killed by temperatures above 20 °C. The germination capacity of spores collected from the field was often very small, but this could not be related to the weather. Most seedlings were infected when inoculated at the growing point and incubated in a saturated atmosphere between 3 and 15 °C for at least 8 h.  相似文献   

6.
The impact of abiotic factors on kelp sporophyte reproduction has rarely been investigated. Laminaria digitata (Hudson) J.V. Lamouroux is one of the few summer fertile Laminaria species worldwide and reproduction is subjected to relatively high water temperatures. We investigated the impact of prevailing summer temperatures (~18°C in August) on the induction of sporangia, meiospore release, and germination at the island of Helgoland (North Sea). At Helgoland, fertile sporophytes are found between April and December with a maximum in late summer. While released meiospore numbers were constant between June and October, germination rates decreased significantly in summer. Short‐term exposure of mature sori to 17°C–22°C induced a significantly higher meiospore release indicating enhancement of sporulation by elevated temperatures. Induction of sporangia on vegetative blade disks was not possible at 20°C, and fertility was only 20% at 18°C–19°C, but it was 100% in cool temperatures of 1°C–10°C. It was shown for the first time in a kelp species that “sporogenesis” is the life‐cycle process with the narrowest temperature window compared to growth or survival of the sporophyte or reproduction, growth, and survival of the gametophyte. We incorporated several parameters (induction time, fertile area, and relative fertility) into a “Reproductive efficiency index.” This indicates that sporogenesis of L. digitata is a cold‐adapted process with an optimum at (5)–10°C. The results show that the population at Helgoland is at its reproduction limit despite the existence of other geographically more southerly located populations.  相似文献   

7.
The development of Puccinia hordei on barley cv. Zephyr   总被引:2,自引:0,他引:2  
Germination of uredospores of Puccinia hordei was similar on cover-slips and on the first leaves of barley seedlings (cv. Zephyr) at 100 % r.h. over the range 5–25 °C, being greatest at 20 °C. At 15, 20 and 25 °C maximum germination was attained in 6 h. No uredospores germinated on coverslips in humidities below saturation. The numbers of pustules which subsequently developed on plants incubated at 5, 10, 15 or 18 °C and 100 % r.h. for varying periods up to 24 h, were directly related to rise in temperature and length of incubation. The time from inoculation to eruption of pustules (generation time) was 6 days at 25 °C, 8 days at 20 °C, 10 days at 15 °C, 15 days at 10 °C and 60 days at 5 °C. Pustule production on inoculated plants which had been kept at 5 °C was rapidly accelerated when they were transferred to 20 °C. Data obtained at constant temperatures were used to predict generation times of the fungus in the field. The productivity of pustules, determined as weight of uredospores, was examined at 10, 15 and 20 °C. Significantly more spores were produced at 15 than at 10 °C and most were produced at 20 °C. The results are discussed in relation to those obtained by other workers and to the development of brown rust in the field.  相似文献   

8.
The impact of growth temperature was evaluated for the fungal plant pathogen Mycoleptodiscus terrestris over a range of temperatures (20–36°C). The effect of temperature on biomass accumulation, colony forming units (cfu), and microsclerotia production was determined. Culture temperatures of 24–30°C produced significantly higher biomass accumulations and 20–24°C resulted in a significantly higher cfu. The growth of M. terrestris was greatly reduced at temperatures above 30°C and was absent at 36°C. The highest microsclerotia concentrations were produced over a wide range of temperatures (20–30°C). These data suggest that a growth temperature of 24°C would optimize the parameters evaluated in this study. In addition to growth parameters, we also evaluated the desiccation tolerance and storage stability of air-dried microsclerotial preparations from these cultures during storage at 4°C. During 5 months storage, there was no significant difference in viability for air-dried microsclerotial preparations from cultures grown at 20–30°C (>72% hyphal germination) or in conidia production (sporogenic germination) for air-dried preparations from cultures grown at 20–32°C. When the effect of temperature on germination by air-dried microsclerotial preparations was evaluated, data showed that temperatures of 22–30°C were optimal for hyphal and sporogenic germination. Air-dried microsclerotial preparations did not germinate hyphally at 36°C or sporogenically at 20, 32, 34, or 36°C. These data show that temperature does impact the growth and germination of M. terrestris and suggest that water temperature may be a critical environmental consideration for the application of air-dried M. terrestris preparations for use in controlling hydrilla.  相似文献   

9.
White rust of chrysanthemums   总被引:1,自引:0,他引:1  
Teleutospores of Puccinia horiana Henn. germinate and discharge sporidia between 4 and 23 °C. At the optimum temperature of 17 °C sporidia discharge starts within 3 h. Maximum germination of the sporidia takes place within 2·5 h between o and 30 °C, there being no clear optimum. High humidity and a film of moisture appear to be necessary for germination of both teleutospores and sporidia. Sporidia can penetrate either leaf surface of chrysanthemum to cause infection between 4 and 24 1°C and within the optimum temperature range, 17–24 °C, effectively penetrate within 2 h. The sporidia are very sensitive to desiccation at below 90 % relative humidity. Methods are described, using leaf discs and whole plants, for screening chrysanthemum cultivars for susceptibility to white rust. Cultivars were placed in five classes ranging from susceptible to immune. Leaf discs of immune cultivars can be distinguished within 30 h by a brown discolouration at the point of inoculation. The early stages of development of the fungus in susceptible, resistant and immune hosts are described. The incubation period in susceptible plants is normally 7–10 days, teleutospores being formed a few days later. Leaves become less susceptible with age but the oldest leaves on 5-month-old plants could still be infected. The maximum survival time of teleutospores in the sori on detached leaves was 8 weeks but was considerably less under moist conditions or buried in soil. Low doses of a mancozeb with zineb fungicide controlled infection by preventing penetration rather than by inhibiting sporidial germination.  相似文献   

10.
Persistence of conidia of an isolate of Erynia radicans (Syn. Zoophthora radicans) was investigated in relation to the meteorological conditions which occurred during autumn-winter of 1990–91 in the coastal plain in Israel. Capilljconidia shielded from the sun, placed on the abaxial surface of leaves of Plumeria acuminata, persisted for 24 h to at least 120 h. Exposed capilliconidia, placed on the adaxial surface of the same leaves, died within 24 h. Almost all the primary conidia shielded from the sun (placed on the abaxial surface of the same leaves) died within a single day. Conidial viability was expressed in subsequent germination on an agar medium. Capilliconidial persistence was closely related to the daily air temperatures, expressed as cumulative day-degrees. Differences in relative humidity had no substantial effect on capilliconidial mortality. At daytime temperatures of ≤ 20°C, mortality after 24 h incubation was lowest (≤ 34%) and the persistence duration, longest (at least 120 h). Increases in daytime temperature up to 24°C for a few hours increased mortality (37–57% after 24 h incubation) and shortened the persistence duration (72–120 h). Exposure to 24–29°C during daytime greatly increased mortality (65–58% after 24 h) and further shortened the persistence duration (24–48 h). Daytime temperatures of > 29°C were lethal to all capilliconidia within 24 h. Temperature had a profound effect on capilliconidial persistence also under controlled environmental conditions. The significance of capiliiconidial persistence is discussed in relation to activity of the fungus in its natural environment.  相似文献   

11.
Eight native isolates of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin were obtained by monitoring soils cultivated in a conventional manner. These isolates were compared in three areas: (a) conidial germination, (b) radial growth and sporulation and (c) ability of conidia to infect Tenebrio molitor larvae. All bioassays were carried out at constant temperatures of 10, 15, and 20 °C. Conidia of individual isolates demonstrated differences in germination after a 24-h long incubation at all evaluated temperatures. At 20 °C, the germination ranged from 67 to 100 % and at 15 °C from 5.33 to 46.67 %. At 10 °C, no germination was observed after 24 h; nevertheless, it was 8.67–44.67 % after 48 h. In terms of radial growth, the culture diameters and the associated production of spores of all isolates increased with increasing temperature. At 10 °C, sporulation was observed in three isolates while all remaining cultures appeared sterile. Three weeks post-inoculation, conidia of all assessed isolates caused 100 % cumulative mortality of treated larvae of T. molitor at 15 and 20 °C with the exception of isolate 110108 that induced 81.33 % mortality at 15 °C. At 10 °C, larval cumulative mortality ranged from 6.67 to 85.33 % depending on the isolate. Isolates 110108 and 110111 showed significantly slower outset and a much lower rate of infection at all temperatures compared to other tested isolates of M. anisopliae. The bioassays were carried out with the purpose to sort and select indigenous isolates of M. anisopliae useful as biocontrol agents in their original habitat.  相似文献   

12.
When oospores of Phytophthora caetorum from 30-day-old culture were treated with 0.25% KMnO4 for 20 min and incubated at 24°C under light for 10 days, 65–75% germinated on water agar and water agarose but only 1–21% germinated on V-8 agar and S+L agar. Water agarose was selected because germinated oospores formed restrieted colonies on this medium that could be isolated easily. KMnO4 treatment killed sporangia, chlamydospores and mycelial fragments present in oospore suspensions. Under the above conditions, approximately 44% of oospores from 10-day-old culture germinated and the optimum germination rate of about 75% was obtained when oospores reached about 20 days old.  相似文献   

13.
Pestalotia rhododendri was exposed to vapours from 1 ml propanol solution in water and linear growth, formation of aerial hyphae and production of conidia were determined. A special Petri dish technique was used and maximum stimulation of conidial formation was induced by the vapours from a propanol concentration of 3–4 % (v/v) at 25°C. When propanol was added directly to the medium, a concentration of 1.2 × 10?2M was optimal for growth and sporulation at 30°C. Sporulation stimulated by propanol was observed at temperatures from 20–32°C, with an optimum at 30°C. Certain observations indicated that an exposure to propanol for 24 hours was enough to induce a stimulated spore production. The stimulation was noticed on different media at 25°C, and was more pronounced at 30°C. One exception was observed. Propanol did not promote sporulation when the fungus was grown on maltagar at 30°C. Propanol 3 ° (v/v) in combination with the standard medium containing (NH4)2-tartrate as sole nitrogen source, inhibited the linear growth at 15–20°C, was inactive at 22.5° and 25°C, and stimulated growth at 27.5–31°C. The stimulatory effect was maximal at 30°C. Other media were tested at 25° and 30°C. At both temperatures stimulations of linear growth caused by propanol were observed with a medium containing KNO3 as sole nitrogen source, and inhibitions with maltagar and another medium containing l -asparaginc as sole nitrogen source. The linear growth could be either inhibited or stimulated while the sporulation was stimulated.  相似文献   

14.
The optimum temperature for growth and sporulation of Colletotrichum gloeosporioides from Hevea brasiliensis was between 26 and 32 oC, whereas spore germination exceeded 90% between 21.5 and 30.5 oC. Germination decreased in culture after 3 days, and on exposure of spores to sunlight or oven heat (46 oC) for 10 min. Spore viability and germination were sensitive to atmospheric humidity; at 99% r.h. germination was half that at 100% r.h. and was negligible below 97% r.h. Germination decreased by up to 30% after 3 h storage at 80% r.h. Continuous light favoured spore production in vitro, but spores produced in the dark had a higher percentage germination. No differences were detected between the numbers of spores germinating on leaves of different ages, although there were slightly more on susceptible cultivars and in the presence of extracts of uninfected susceptible leaves. Extracts from, infected leaves depressed spore germination, as did concentrations above 5 times 105 spores/ml. The highest % germination was observed when naturally infected leaves were dry-stored for up to 20 days and then incubated for 2 days in a moist chamber.  相似文献   

15.
Phleum sardoum is an endemic psammophilous species of Sardinia, growing exclusively on coastal sandy dunes. The effect of glumes on seed germination, germination requirements at constant (5–25°C) and alternating (25/10°C) temperatures, both in the light (12/12 h) and in the dark were evaluated, as well as the effect of a dry after‐ripening period (90 days at 25°C), the salt stress effect (0–600 mmol NaCl) and its recovery on seed germination. The presence of glumes reduced final germination percentages. For fresh naked seeds, high germination percentages were observed at 10°C. Dry after‐ripening increased germination rate at low temperatures, but did not affect final germination percentages. NaCl determined a secondary salt‐induced dormancy which recovery interrupted only partially. Our results highlighted that this species has its optimum of germination during autumn–winter when, under a Mediterranean climate, water availability is highest and soil salinity levels are minimal.  相似文献   

16.
Osmotic priming of carrot seeds for 2 wk in polyethylene glycol (PEG, — 10 MPa) at 15 °C led to more rapid and synchronous germination at 20 °C compared to untreated seeds. These responses were enhanced by a 24 h pre-priming soak in water or a change of solution after the first 24 h of priming to remove leachate. The inclusion of 200 mg litre-1N-substituted phthalimide in the pre-priming soak and/or in the PEG further enhanced the results of priming. Leachate removal combined with phthalimide inclusion gave 79% and 86% germination from seeds of two carrot cultivars during the first day in 20°C water following priming. In contrast, cumulative germination of untreated seeds of the same cultivars was 18% and 61% respectively after 3 days in 20°C water. Seeds primed in PEG containing 200 mg phthalimide litre-1with the solution replaced after the first 24 h germinated earlier and more synchronously than untreated seeds over a range of germination temperatures (5, 10, 15, or 20°C), but the effects of priming were most marked at 5°C.  相似文献   

17.
Crisp lettuce plants cv. Saladin were grown from the time they started flowering, at 20/10°C (16 h day, 8 h night), 25/15°C and 30/20°C in glasshouses on two occasions in 1985. Yields of seed increased from, on average, 15 g to 27 g and then fell to 20 g per plant with progressive increases in temperature. The number of mature florets per plant increased with temperature but the number of seeds per mature floret was lower at 20/10°C and 30/20°C than at 25/15°C. An increase in temperature reduced mean seed weight by up to 45%, seed volume by 15%, cell numerical volume density (Nv) by 27% and the number of cells per seed by 39%. Percentage seed germination reached a maximum early in seed development at the stage when the pappus appeared through the involucral bracts. Differences in percentage germination and vigour of seeds (slope test) from different temperatures were accounted for largely by the effects on mean seed weight. However, when germinated at 30°C seeds produced at 30/20°C germinated more readily than those produced at 25/15°C or 20/10°C. Seed vigour gradually increased with an increase in the length of storage after harvest, reaching a maximum after 260 days. In general, seeds produced at 25/15°C exhibited a greater variation in numbers of seeds per floret, Nv, seed weight, times of seedling emergence, seedling and mature head weight than seeds produced at lower or higher temperatures.  相似文献   

18.
This paper presents results on the effect of light, temperature and substrate during spore formation on the germinability of conidia in Colletotrichum falcatum. Light seems to have no effect on the germination of conidia unless the cultures were exposed to a high intensity of light during sporulation, in which case the spores showed a reduced germination and an increased appressoria formation. Conidia produced at temperatures higher than the optimum showed better germination and less appressoria formation than the spores produced at the temperature optimum for the growth and sporulation of the fungus. A similar increase in germination was also observed in conidia obtained from inoculated sugarcane leaves as compared to those produced on culture media. The light type virulent isolates of C. falcatum showed greater sensitivity to all these treatments than the dark type weakly pathogenic isolates.  相似文献   

19.
Ulocladium atrum and Gliocladium roseum are fungal antagonists capable of suppressing sporulation of Botrytis spp. on dead plant parts. The effect of temperature (3 to 36 °C) on antagonist conidial germination and mycelial growth was assessed on agar. In addition conidial germination of U. atrum was measured on dead lily leaves. The optimum temperature of both antagonists for both conidial germination and mycelial growth was between 27 and 30 °C. U. atrum was less affected by lower temperatures than G. roseum. At optimum temperature, 50% of conidia of U. atrum and G. roseum germinated within 2.6 and 10.0 hrs, respectively. At low sub-optimal temperatures (6 °C), 50% of conidia germinated within 18 and 96 hours, respectively.In bioassays on dead onion leaves, U. atrum suppressed sporulation of B. cinerea and B. aclada at all temperatures tested (6 to 24 °C) by more than 85%. On dead cyclamen leaves, G. roseum was more efficient than U. atrum at 21 and 24 °C but, in contrast to U. atrum, showed no antagonistic activity at temperatures below 21 °C. On dead hydrangea leaves, U. atrum significantly reduced sporulation of B. cinerea at temperatures as low as 3 and 1 °C. Under Dutch growing conditions, the mean air temperature during leaf wetness periods in onion and lily fields was 15 °C with temperatures only occasionally above 20 °C. In greenhouse crops of cyclamen, the mean temperature during high humidity periods was 17 °C. It is therefore concluded that U. atrum is better adapted than G. roseum to temperatures which occur in the field, in greenhouse crops such as cyclamen, or during cold storage of plant stocks.  相似文献   

20.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号