首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The partial amino acid sequence of the Fc region of an unusual monoclonal immunoglobulin molecule (Goe), which had the allotypic markers Gm (b0, b3, b5, s, t, v), rarely encountered in Caucasians, was determined. Protein Goe was previously shown to belong to the gamma 3 subclass by antigenic typing, to possess a gamma 3-like hinge region and a gamma 1-like carboxy-terminal octadecapeptide, and to bind to staphylococcal protein A. The sequence of protein Goe resembled that of gamma 3 molecules except for the presence of tyrosine at position 296, alanine at position 339, and histidine and tyrosine at positions 435 and 436. It is of interest that histidine 435 appears to play an important role in binding to Staph protein A. Since tyrosine and phenylalanine at 296 and 300 are typical of G3m(g) molecules, whereas protein Goe is G3m(g-), this may correspond to the non-b1 allotypic marker. Of the numerous explanations to account for these findings, the most likely possibilities are that protein Goe is either a hybrid molecule or the product of a germ line gene representing the G3m s allotype, which is rare in Caucasians and common in Mongoloid populations. Support for the latter alternative is provided by the isolation from normal serum of a small amount of a protein having many of the properties of protein Goe.  相似文献   

2.
Members of the phospholipase C-beta (PLC-beta) family of proteins are activated either by G alpha or G beta gamma subunits of heterotrimeric G proteins. To define specific regions of PLC-beta 3 that are involved in binding and activation by G beta gamma, a series of fragments of PLC-beta 3 as glutathione-S-transferase (GST) fusion proteins were produced. A fragment encompassing the N-terminal pleckstrin homology (PH) domain and downstream sequence (GST-N) bound to G protein beta 1 gamma 2 in an in vitro binding assay, and binding was inhibited by G protein alpha subunit, G alpha i1. This PLC-beta 3 fragment also inhibited G beta gamma-stimulated PLC-beta activity in a reconstitution system, while having no significant effect on G alpha q-stimulated PLC-beta 3 activity. The N-terminal G beta gamma binding region was delineated further to the first 180 amino acids, and the sequence Asn150-Ser180, just distal to the PH domain, was found to be required for the interaction. Mutation of basic residues 154Arg, 155Lys, 159Lys, and 161Lys to Glu within this region reduced G beta gamma binding affinity and specifically reduced the EC50 for G beta gamma-dependent activation of the mutant enzyme 3-fold. Basal activity and G alpha q-dependent activation of the enzyme were unaffected by the mutations. While these basic residues may not directly mediate the interaction with G beta gamma, the data provide evidence for an N-terminal G beta gamma binding region of PLC-beta 3 that is involved in activation of the enzyme.  相似文献   

3.
An amino acid substitution determining G3m(g)   总被引:1,自引:0,他引:1  
An allotypic G3m(g) marker-specific substitution was studied by sequence analysis of glycopeptides derived from myeloma proteins Ba (G3m(g+)) and Bu (G3m(g-)). The experimental results indicate that glutamic acid at position 295 is responsible for the specificity. Based on the results of chemical modification (Arg, Tyr, and Glu), this antigenic epitope is presumed to involve five sequential residues from Arg-292 to Tyr-296.  相似文献   

4.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   

5.
Christian T  Evilia C  Hou YM 《Biochemistry》2006,45(24):7463-7473
The enzyme tRNA(m1G37) methyl transferase catalyzes the transfer of a methyl group from S-adenosyl methionine (AdoMet) to the N1 position of G37, which is 3' to the anticodon sequence and whose modification is important for maintaining the reading frame fidelity. While the enzyme in bacteria is highly conserved and is encoded by the trmD gene, recent studies show that the counterpart of this enzyme in archaea and eukarya, encoded by the trm5 gene, is unrelated to trmD both in sequence and in structure. To further test this prediction, we seek to identify residues in the second class of tRNA(m1G37) methyl transferase that are required for catalysis. Such residues should provide mechanistic insights into the distinct structural origins of the two classes. Using the Trm5 enzyme of the archaeon Methanocaldococcus jannaschii (previously MJ0883) as an example, we have created mutants to test many conserved residues for their catalytic potential and substrate-binding capabilities with respect to both AdoMet and tRNA. We identified that the proline at position 267 (P267) is a critical residue for catalysis, because substitution of this residue severely decreases the kcat of the methylation reaction in steady-state kinetic analysis, and the k(chem) in single turnover kinetic analysis. However, substitution of P267 has milder effect on the Km and little effect on the Kd of either substrate. Because P267 has no functional side chain that can directly participate in the chemistry of methyl transfer, we suggest that its role in catalysis is to stabilize conformations of enzyme and substrates for proper alignment of reactive groups at the enzyme active site. Sequence analysis shows that P267 is embedded in a peptide motif that is conserved among the Trm5 family, but absent from the TrmD family, supporting the notion that the two families are descendants of unrelated protein structures.  相似文献   

6.
The authors established the amino acid substitutions determining G3m(s) and G3m(t) specificities, which characterize Mongoloid populations, by sequence analysis of the Fc region of a myeloma protein (Jir). By comparing the amino acid sequences of the IgG3 (Jir) and the other IgG subclasses analyzed to date, it was found that G3m(s) was an isoallotype specified by an amino acid substitution at position 435; i.e., whereas the subclasses IgG1, IgG2, and IgG4 had histidine in common, G3m(s-) had arginine in this position. This was also confirmed by the observation that the Fc fragment in question bound to protein A. It was also established that the amino acid at position 379 of G3m(t-) IgG3 and the other subclasses was valine, whereas methionine in this position was specific for G3m(t+). In addition, the amino acids at position 339 of G3m(u-) IgG3 Jir was threonine, and at position 296 of G3m(g-) IgG3 Jir was tyrosine. These findings are not in accord with the hitherto postulated relations of alanine and phenylalanine to G3m(u-) and G3m(g-), respectively. Finally, this study showed that a large number of substitutions occurred at positions 384 through 389, which suggests that many specificities of the G3m(b) group occur on IgG3 proteins.  相似文献   

7.
扩展青霉PF898碱性脂肪酶cDNA的克隆及序列分析   总被引:13,自引:0,他引:13  
扩展青霉 (Penicilliumexpansum)PF898可产生一种具有工业价值的碱性脂肪酶 (PEL) .在测定了其N端 12个氨基酸残基序列的基础上 ,通过RT PCR、5′RACE、基因克隆及序列测定 ,获得了PEL完整的cDNA序列 (GenBank登录号为AF2 84 0 6 4 ) .cDNA全长 10 5 0bp ,包括PEL编码区、3′非翻译区和部分 5′非翻译区基因的序列 .编码区cDNA由 85 5个碱基组成 ,编码 1个由 2 85个氨基酸残基组成的酶蛋白 ,其信号肽及前肽部分由 2 7个氨基酸残基组成 ,成熟肽部分由 2 5 8个氨基酸残基组成 .根据氨基酸组成推导该脂肪酶蛋白的分子量为 2 7 3kD .该脂肪酶的氨基酸序列 130~ 134位上有各类脂肪酶中普遍存在的G X S X G保守序列  相似文献   

8.
Catalysis of the disproportionation of superoxide by human manganese superoxide dismutase (MnSOD) is characterized by an initial burst of catalysis followed by a much slower region that is zero order in superoxide and due to a product inhibition by peroxide anion. We have prepared site-specific mutants with replacements at His30, the side chain of which lies along the substrate access channel and is about 5.8 A from the metal. Using pulse radiolysis to generate superoxide, we have determined that kcat/K(m) was decreased and product inhibition increased for H30V MnSOD, both by 1-2 orders of magnitude, compared with wild type, H30N, and H30Q MnSOD. These effects are not attributed to the redox potentials, which are similar for all of these variants. An investigation of the crystal structure of H30V Mn(III)SOD compared with wild type, H30Q, and H30N Mn(III)SOD showed the positions of two gamma carbons of Val30 in the active site; Cgamma1 overlaps Cgamma of His30 in wild type, and Cgamma2 extends into the substrate access channel and occupies the approximate position of a water molecule in the wild type. The data suggest that Cgamma2 of the Val side chain has significantly interrupted catalysis by this overlap into the access channel with possible overlap with the substrate-product binding site. This is supported by comparison of the crystal structure of H30V MnSOD with that of azide bound to Mn(III)SOD from Thermus thermophilus and by visible absorption spectra showing that azide binding to the metal in H30V Mn(III)SOD is abolished. Moreover, the presence of Val30 caused a 100-fold decrease in the rate constant for dissociation of the product-inhibited complex compared with wild type.  相似文献   

9.
The constant region of the gamma 1, gamma 2 and gamma 3 heavy chains of the human IgG1, IgG2 and IgG3 immunoglobulins carries antigenic determinants or G1m, G2m and G3m allotypes, which are genetic markers of these subclasses. The exceptional presence on gamma 1 and gamma 2 chains of Gm allotypes usually located on the CH3 domain of gamma 3 shows an unexpected clustering of base changes and subsequent identity of short DNA sequences in the CH3 exon of the non-allelic gamma 1, gamma 2 and gamma 3 genes. Such clusters of substitutions are not easily explained on the classical basis of point mutations. A gene conversion, which substituted a segment of the gamma 1 or gamma 2 gene with the homologous region of the non-allelic gamma 3 gene, is more likely. Other examples of possible conversion involving the gamma genes are described. The conservation or the restoration of short sequences produced by the conversion events might be related to the biological properties of the constant region of the heavy chains.  相似文献   

10.
Plant glycine-rich RNA-binding proteins (GRRBPs) contain a glycine-rich region at the C-terminus whose structure is quite unknown. The C-terminal glycine-rich part is interposed with arginine and tyrosine (arginine/glycine/tyrosine (RGY)-rich domain). Comparative sequence analysis of forty-one GRRBPs revealed that the RGY-rich domain contains multiple repeats of Tyr-(Xaa)h-(Arg)k-(Xaa)l, where Xaa is mainly Gly, "k" is 1 or 2, and "h" and "l" range from 0 to 10. Two peptides, 1 (G1G2Y3G4G5G6R7R8D9G10) and 2 (G1G2R3R4D5G6G7Y8G9G10), corresponding to sections of the RGY-rich domain in Zea mays RAB15, were selected for CD and NMR experiments. The CD spectra indicate a unique, positive band near 228 nm in both peptides that has been ascribed to tyrosine residues in ordered structures. The pH titration by NMR revealed that a side chain-side chain interaction, presumably an H-Nepsilon...O=Cgamma hydrogen bonding interaction in the salt bridge, occurs between Arg (i) and Asp (i + 2). 1D GOESY experiments indicated the presence of NOE between the aromatic side chain proton and the arginine side chain proton in the two peptides suggesting strongly that the Arg (i) aromatic side chain interacts directly with the Tyr (i +/- 4 or i +/- 5) side chain.  相似文献   

11.
The alpha-glucosidase of Bacillus sp. strain SAM1606 is a member of glycosyl hydrolase family 13, and shows an extraordinarily broad substrate specificity and is one of very few alpha-glucosidases that can efficiently hydrolyze the alpha-1,1-glucosidic linkage of alpha,alpha'-trehalose (trehalose). Phylogenetic analysis of family-13 enzymes suggests that SAM1606 alpha-glucosidase may be evolutionally derived from an alpha-1,6-specific ancestor, oligo-1,6-glucosidase (O16G). Indeed, replacement of Pro(273*) and Thr(342*) of B. cereus O16G by glycine and asparagine (the corresponding residues in the SAM1606 enzyme), respectively, was found to cause 192-fold enhancement of the relative catalytic efficiency for trehalose, suggesting that O16G may easily "evolved" into an enzyme with an extended substrate specificity by substitution of a limited number of amino acids, including that at position 273* (an asterisk indicates the amino-acid numbering of the SAM1606 sequence). To probe the role of the amino acid at position 273* of alpha-glucosidase in determination of the substrate specificity, the amino acid at position 273 of SAM1606 alpha-glucosidase was replaced by all other naturally occurring amino acids, and the resultant mutants were kinetically characterized. The results showed that substitution of bulky residues (e.g., isoleucine and methionine) for glycine at this position resulted in large increases in the K(m) values for trehalose and maltose, whereas the affinity to isomaltose was only minimally affected by such an amino-acid substitution at this position. Three-dimensional structural models of the enzyme-substrate complexes of the wild-type and mutant SAM1606 alpha-glucosidases were built to explore the mechanism responsible for these observations. It is proposed that substitution by glycine at position 273* could eliminate steric hindrance around subsite +1 that originally occurred in parental O16G and is, at least in part, responsible for the acquired broad substrate specificity of SAM1606 alpha-glucosidase.  相似文献   

12.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

13.
In a hypercholesterolemic Lebanese family, an uncommon Gm haplotype carrying an unexpected C gamma 1 gene was inherited by only one of 10 siblings. A new recombination during the maternal or paternal meiosis could explain its formation. According to this hypothesis, our data would be informative for the linkage relationship between the gamma-cistrons and the alpha 2-cistron. The latter might be located near the N-terminal side of the gamma-cistron linkage group, and the sequence of genes would be alpha 2, gamma 4, gamma 3, and gamma 1. A mutation could also effect the change from G1m(17) (codons AAA and AAG) TO G1m(3) (codons AGA and AGG). Another alternative is to postulate a constitutive expression of a C gamma 1 structural gene which, normally, would not be expressed. The uncommon derepression could be the consequence of uncommon cellular response to environmental, pathological or metabolic perturbation of a regulatory mechanism.  相似文献   

14.
The resonances of nonprotonated aromatic carbons in natural abundance 13C NMR spectra of hen egg white lysozyme are assigned to specific residues of the amino acid sequence. Chemical shift considerations, the effect of pH, and partially relaxed Fourier transform NMR spectra are used to assign each resonance to one of the seven types of nonprotonated aromatic carbons of amino acid residues. Spectra of chemically modified lysozyme samples yield various assignments to specific residues in the sequence. Line-broadening effects caused by binding of the relaxation probes Gd3+ and 4-N-acetamido-2,2,6,6-tetramethylipiperidine-1-oxyl yield specific assignments which are fully consistent with those based on chemical modifications. The effects of paramagnetic shift reagents and amino sugar inhibitors do not yield any obvious specific assignments. The effect of pH on the chemical shift of Cgamma of His-15 yields a pKalpha in agreement with published values, and indicates that the imidazole form of His-15 exists mainly (or entirely) as the Nepsilon3-H tautomer. The effect of pH on the chemical shifts (measured up to pH 8.8, at 38 degrees) of Czeta and Cgamma of the 3 tyrosine residues yields crude pKalpha values of 9.5 and 10 for Tyr-23 and one of the other tyrosines, respectively. The 3rd tyrosine residue does not exhibit titration behavior.  相似文献   

15.
Tetanic electrical stimulation of myotubes evokes a ryanodine receptor-related fast calcium signal, during the stimulation, followed by a phospholipase C/inositol 1,4,5-trisphosphate-dependent slow calcium signal few seconds after stimulus end. L-type calcium channels (Cav 1.1, dihydropyridine receptors) acting as voltage sensors activate an unknown signaling pathway involved in phospholipase C activation. We demonstrated that both G protein and phosphatidylinositol 3-kinase were activated by electrical stimulation, and both the inositol 1,4,5-trisphosphate rise and slow calcium signal induced by electrical stimulation were blocked by pertussis toxin, by a Gbetagamma scavenger peptide, and by phosphatidylinositol 3-kinase inhibitors. Immunofluorescence using anti-phosphatidylinositol 3-kinase gamma antibodies showed a clear location in striations within the cytoplasm, consistent with a position near the I band region of the sarcomere. The time course of phosphatidylinositol 3-kinase activation, monitored in single living cells using a pleckstrin homology domain fused to green fluorescent protein, was compatible with sequential phospholipase Cgamma1 activation as confirmed by phosphorylation assays for the enzyme. Co-transfection of a dominant negative form of phosphatidylinositol 3-kinase gamma inhibited the phosphatidylinositol 3-kinase activity as well as the slow calcium signal. We conclude that Gbetagamma/phosphatidylinositol 3-kinase gamma signaling pathway is involved in phospholipase C activation and the generation of the slow calcium signal induced by tetanic stimulation. We postulate that membrane potential fluctuations in skeletal muscle cells can activate a pertussis toxin-sensitive G protein, phosphatidylinositol 3-kinase, phospholipase C pathway toward modulation of long term, activity-dependent plastic changes.  相似文献   

16.
F(1)-ATPase is a rotary motor protein, and ATP hydrolysis generates torque at the interface between the gamma subunit, a rotor shaft, and the alpha(3)beta(3) substructure, a stator ring. The region of conserved acidic "DELSEED" motif of the beta subunit has a contact with gamma subunit and has been assumed to be involved in torque generation. Using the thermophilic alpha(3)beta(3)gamma complex in which the corresponding sequence is DELSDED, we replaced each residue and all five acidic residues in this sequence with alanine. In addition, each of two conserved residues at the counterpart contact position of gamma subunit was also replaced. Surprisingly, all of these mutants rotated with as much torque as the wild-type. We conclude that side chains of the DELSEED motif of the beta subunit do not have a direct role in torque generation.  相似文献   

17.
Non-initiator methionine tRNA (tRNAMet) was purified from Bacillus subtilis W 168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be p-G-G-C-G-G-U-G-U-A-G-C-U-C-A-G-C-G-G-C-D-A-G-A-G-C-G-U-A-C-G-G-U-U-C-A-U-m6A-C-C-C -G-U-G-A-G-G(m7G)-U(D)-C-G-G-G-G-G-T-psi-C-G-A-U-C-C-C-C-U-C-C-G-C-C-G-C-U-A-C- C-A-OH. The nucleosides of G46 and U47 were partially modified to m7G and D, respectively. The nucleotide sequence shows a unique feature that the position adjacent to 3'-end of the anticodon C-A-U is occupied by m6A, not by t6A, although the tRNAMet belongs to a groups of tRNAs which recognize codons starting with A.  相似文献   

18.
The environments of the aromatic residues (and of the single arginine residue) of azurin from Pseudomonas aeruginosa are investigated by means of natural-abundance 13C Fourier transform NMR spectroscopy. In the case of the diamagnetic Cu(I) azurin, all 17 nonprotonated aromatic carbons (and Czota of Arg-79) yield narrow resonances. Furthermore, a single-carbon amide carbonyl resonance with an unusual chemical shift (peak chi) is observed. The pH dependence of chemical shifts is used to identify the resonances of Cgamma of titrating histidines, and of Cgamma and Czota of the two tyrosines. The resonances of Cgamma and Cdelta2 of the single tryptophan residue (and Czota of Arg-79) are also identified. The pKa values of the two tyrosines are different from each other and higher than typical values of "solvent-exposed" tyrosine residues. Two of the four histidine residues do not titrate (in the pH range 4 to 11). The resonance of Cgamma of one histidine exhibits a pH titration with fast proton exchange behavior and a pKa of 7.5 +/- 0.2. The direction of the titration shift indicates that the imidazole form of this histidine is the Ndelta1-H tautomer. The Cgamma resonance of the other titrating histidine exhibits slow exchange behavior with a pKa of about 7. The imidazole form of this histidine is the Nepsilon2-H tautomer. When going to the paramagnetic Cu(II) protein, only 11 of the 19 carbons mentioned above yield resonances that are narrow enough to be detected. Also, some of the observed resonances exhibit significant paramagnetic broadening. A comparison of spectra of fully reduced azurin, mixtures of reduced and oxidized azurin, and fully oxidized azurin yields the following information. (i) Peak chi arises from an amide group that probably is coordinated to the copper. (ii) The two nontitrating histidine residues are probably copper ligands, with Ndelta1 coordinated to the metal. (iii) The side chains of Arg-79 and the two tyrosine residues are not coordinated to the copper, and Trp-48 is probably not a ligand either. (iv) The gamma carbons of Trp-48, the tyrosine with the lower pKa, the titrating histidine with slow exchange behavior, and three or four of the six phenylalanine residues are sufficiently close to the copper to undergo significant paramagnetic broadening in the spectrum of oxidized azurin.  相似文献   

19.
Polyacrylamide gel electrophoresis in urea and Triton X-100 of a hemolysate from human fetal red blood cells produces four major protein bands: alpha, beta, and 2 gamma globin chains. We have verified that the latter two are the G gamma and A gamma globin chains which have respectively glycine or alanine at position 136. After incorporation of either [3H] alanine or [3H] glycine into newly synthesized globin each gamma chain was isolated by preparative electrophoresis. The chains were cleaved with cyanogen bromide at methionines 55 and 133, then subjected to automated sequencing, and the residues from each sequencer turn counted. Glycine incorporation was detected for the third turn (position 136) of the G gamma chain and alanine for the A gamma. Substantial metabolic conversion of [3H] glycine to serine and proline was also noted.  相似文献   

20.
5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA.   总被引:18,自引:0,他引:18  
C M Wei  A Gershowitz  B Moss 《Biochemistry》1976,15(2):397-401
The 5'-terminal oligonucleotides m7G(5')ppp(5')NmpNp and m7G(5')ppp(5')NmpNmpNp were isolated by DEAE-cellulose column chromatography after enzymatic digestion of 32P- or methyl-3H-labeled poly(A)" HeLa cell mRNA. The recovery of such oligonucleotides indicated that a high percentage of mRNA has blocked termini. The dimethylated nucleoside, N6, O2'-dimethyladenosine (m6Am), as well as the four common 2'-O-methylribonucleosides (Gm, Am, Um, Cm) were present in the second position linked through the triphosphate bridge to 7-methylguanosine (m7G) whereas little m6Am was in the third position. The only internal methylated nucleoside, N6-methyladenosine (m6A), was found exclusively as m6ApC and Apm6ApC after digestion with RNase A, T1, and alkaline phosphatase. Digestion with RNase A and alkaline phat pyrimidines are present in much smaller amounts or absent from this position. These results imply a considerable sequence specificity since there are thousands of different mRNA species in HeLa cells. Our studies are consistent with the following model of HeLa cell mRNA in which Nm may be m6Am, Gm, Cm, Um, or Am and one or more m6A residues are present at an unspecified internal location: m7G(5')ppp(5')Nm-(Nm)---(G or A)-m6A-C---(A)100-200A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号