首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRH receptors have been solubilized from GH4C1 cells using the plant glycoside digitonin. Solubilized receptors retain the principal binding characteristics exhibited by the TRH receptor in intact pituitary cells and their membranes. The binding of the methylhistidyl derivative of TRH [( 3H]MeTRH) attained equilibrium within 2-3 h at 4 C, and it was reversible, dissociating with a t1/2 of 7 h. Analysis of [3H]MeTRH binding to soluble receptors at 4 C yielded a dissociation constant (Kd) of 3.8 nM and a total binding capacity (Bmax) of 3.9 pmol/mg protein. Peptides known to interact with non-TRH receptors on GH cells failed to interfere with the binding of [3H]MeTRH, indicating that the TRH binding was specific. Chlordiazepoxide, a competitive antagonist for TRH action in GH cells, inhibited TRH binding to soluble receptors with an IC50 of 11 microM. When [3H]MeTRH was bound to membranes and the membrane proteins were then solubilized, we found enhanced dissociation of the prebound [3H]MeTRH from its solubilized receptor by guanyl nucleotides. Maximal enhancement of [3H]MeTRH dissociation by 10 microM GTP gamma S occurred within about 45 min at 22 C. GTP gamma S, GTP, GDP beta S, and GDP were all effectors of [3H]MeTRH dissociation, exhibiting EC50s in the range of 14-450 nM. The rank order of potency of the tested nucleotides was GTP gamma S greater than GTP congruent to GDP beta S greater than GDP much greater than ATP gamma S greater than GMP. We conclude that TRH receptors have been solubilized from GH cells with digitonin and retain the binding characteristics of TRH receptors in intact pituitary cells. Furthermore, prebinding [3H]MeTRH to GH4C1 cell membranes results in the solubilization of a complex in which the TRH receptor is linked functionally to a GTP binding protein.  相似文献   

2.
Binding of the poorly hydrolyzable GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to purified guanine-nucleotide-binding regulatory proteins (G proteins) has been shown to be nonreversible in the presence of millimolar concentrations of Mg2+. In porcine atrial membranes, binding of [35S]GTP[S] to G proteins was stable in the presence of 1 mM Mg2+. However, either large dilution or, even more strongly, addition of unlabelled guanine nucleotides, in the potency order, GTP[S] greater than GTP greater than or equal to guanosine 5'-[beta,gamma-imino]triphosphate greater than GDP greater than or equal to guanosine 5'-[beta-thio]diphosphate greater than GMP, markedly enhanced the observed dissociation, with 20-30% of bound [35S]GTP[S] being released by unlabelled guanine nucleotide within 20 min at 25 degrees C. Most interestingly, dissociation of [35S]GTP[S] was rapidly and markedly stimulated by agonist (carbachol) activation of cardiac muscarinic acetylcholine receptors. Carbachol-stimulated release of [35S]GTP[S] was strictly dependent on the presence of Mg2+ and an unlabelled guanine nucleotide. Although having different potency and efficiency in releasing [35S]GTP[S] from the membranes by themselves, the guanine nucleoside triphosphates and diphosphates studied, at maximally effective concentrations, promoted the carbachol-induced dissociation to the same extent, while GMP and ATP were ineffective. GTP[S]-binding-saturation experiments indicated that one agonist-activated muscarinic acetylcholine receptor can cause release of bound GTP[S] from three to four G proteins. The data presented indicate that binding of GTP[S] to G proteins in intact membranes, in contrast to purified G proteins, is reversible, and that agonist-activated receptors can even, either directly or indirectly, interact with GTP[S]-bound G proteins, resulting in release of bound guanine nucleoside triphosphate.  相似文献   

3.
To test the effects of hydrostatic pressure on the coupling of receptors to guanyl nucleotide binding reglatory proteins (G proteins) in transmembrane signaling, pertussis toxin (PTX)-catalyzed [32P]ADP-ribosylation was used to probe the guanyl nucleotide-binding proteins Gi and G(o) in brain membranes from four marine teleosts. These macrourids, Coryphaenoides pectoralis, Coryphaenoides cinereus, Coryphaenoides filifer and Coryphaenoides armatus, span depths from 200 to 5400 m. Pertussis toxin specifically labelled proteins of 39-41 kDa. The PTX-catalyzed [32P]ADP-ribosylation reaction was linear for 7 h. Added guanyl nucleotides (guanosine 5'-diphosphate (GDP) and guanosine 5'-O-(3-thiotriphosphate)(GTP[S])) at concentrations up to 1000 microM did not affect ribosylation at atmospheric pressure. Under basal conditions the Gi/G(o) protein population appears to be uncoupled from receptors and bound with GDP. Pressures up to 476 atm were tested in the absence and presence of added guanyl nucleotides, 100 microM GDP and 100 microM GTP[S]. [32P]ADP-ribosylation in brain membranes from the deeper-occurring C. cinereus, C. filifer and C. armatus was not inhibited by increased pressure in the presence of 100 microM GDP. Increasing pressure decreased ribosylation in brain membranes of C. pectoralis. In the presence of 100 microM GTP[S], increased pressure inhibited ribosylation in all species. Pressure appears to enhance the efficacy of GTP[S] in dissociating the heterotrimeric holoprotein.  相似文献   

4.
The 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 was purified from porcine brain cytosol by acetone precipitation, CM-Sephadex, octyl-Sepharose and TSK phenyl-5PW HPLC chromatography to apparent homogeneity. ADP-ribosylation of the protein was increased by guanine nucleotides (GTP, GDP, GTP gamma S, each 100 microM) but not by GMP, ATP or ATP gamma S. The purified 22 kDa protein bound maximally 0.9 mol [35S]GTP gamma S and hydrolyzed GTP with the rate 0.007 mol per mol protein. Amino acid sequences were obtained from two tryptic peptides, selected from an in situ digestion of Immobilon electrotransferred, gel purified ADP-ribosylated substrate. The two sequences obtained, cover 23 residues from the corresponding sequences in human rho.  相似文献   

5.
Signal-transducing guanine-nucleotide-binding regulatory proteins (G proteins) are heterotrimers, composed of the nucleotide-binding alpha subunit and a beta gamma dimer. The influence of beta gamma dimer preparations of the retinal G protein transducin (TD) was studied on formylpeptide-receptor--G-protein interactions in membranes of differentiated HL 60 cells. For this, TD was prepared from bovine rod outer segment (ROS) membranes with either GTP or its analogs, guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and guanosine 5'-[beta gamma-imino]triphosphate (Gpp[NH]p). After removal of free nucleotides, TD beta gamma was separated from TD alpha and its function analyzed. Addition of TD beta gamma isolated from TD prepared with GTP[S] (TD beta gamma GTP[S]) to HL 60 membranes abolished high-affinity binding of fMet-Leu-[3H]Phe (fMet, N-formylmethionine) to its receptor. In contrast, TD beta gamma isolated from TD prepared with GTP (TD beta gamma GTP), boiled TD beta gamma GTP[S] and TD alpha prepared with GTP[S] had no or only slight effects. The inhibitory effect of TD beta gamma GTP[S] on fMet-Leu-[3H]Phe receptor binding was potentiated by GDP at low concentrations but not by GTP[S]. Furthermore, TD beta gamma GTP[S], but not TD beta gamma GTP or TD beta gamma isolated from TD prepared with Gpp[NH]p (TD beta gamma Gpp[NH]p), prevented fMet-Leu-Phe-stimulated binding of [35S]GTP[S] to G proteins in HL 60 membranes, measured in the presence of GDP. When TD beta gamma GTP was incubated with GTP [S] and TD-depleted illuminated ROS membranes, and subsequently separated from the membranes and free GTP[S], this TD beta gamma GTP, similar to TD beta gamma GTP[S], abolished high-affinity binding of fMet-Leu-[3H]Phe to its receptor, fMet-Leu-Phe-stimulated binding of [35S]GTP[S], and fMet-Leu-Phe-stimulated GTP hydrolysis in HL 60 membranes. Inhibition of [35S]GTP[S] binding by TD beta gamma was not seen in the presence of the metabolically stable GDP analog, guanosine 5'-[beta-thio]diphosphate. In order to obtain an insight into the modification of TD beta gamma apparently caused by GTP[S], and into its mechanism of action in HL 60 membranes, TD, TD alpha and TD beta gamma, all prepared in the presence of GTP, were incubated with [35S]GTP[S] and TD-depleted illuminated ROS membranes. Fluorographic analysis of the supernatant proteins revealed 35S labelling of the beta band of the G protein. When apparently thiophosphorylated TD beta gamma was incubated with [3H]GDP in the presence of HL 60 membranes, [3H]GTP[S] was rapidly formed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

7.
Rabbit brain cortical membranes, which have been extracted with 2 M KCl, hydrolyze exogenously added [3H]phosphatidylinositol [( 3H]PI) in a guanine nucleotide- and carbachol-dependent manner. Both oxotremorine-M and carbachol are full agonists with EC50 values of 8 and 73 microM, respectively. Pirenzepine and atropine inhibit carbachol-stimulated [3H]PI hydrolysis. The hydrolysis-resistant guanine nucleotide analog guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) is the most potent in supporting carbachol-stimulated hydrolysis of PI. There is no effect of carbachol in the absence of guanine nucleotides or in the presence of 100 microM adenosine 5'-O-(3-thiotriphosphate), adenosine-5'-(beta, gamma-imido)triphosphate, or sodium pyrophosphate. Guanylyl-5'-(beta,gamma-imido)triphosphate [Gpp(NH)p] in the presence of carbachol also stimulates PI hydrolysis although much less than that seen with GTP gamma S. GDP and Gpp(NH)p are potent antagonists of the GTP gamma S-dependent carbachol response. Optimal stimulation by carbachol and GTP gamma S was observed at 0.3-1 microM free Ca2+ and 6 mM MgCl2. Limited trypsinization resulted in loss of receptor-regulated PI breakdown and a slight decrease in basal activity. These results demonstrate that phospholipase C hydrolysis of exogenous PI by rabbit cortical membranes may be stimulated by carbachol in a guanine nucleotide-dependent manner.  相似文献   

8.
NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase.  相似文献   

9.
The ram gene encodes a GTP-binding protein with a M(r) of 25,068 (Nagata, K., Satoh, T., Itoh, H., Kozasa, T., Okano, Y., Doi, T., Kaziro, Y., and Nozawa, Y. (1990) FEBS Lett. 275, 29-32). It has a putative effector domain very similar to that of yeast SEC4 protein, and shares 40% identity and 60% homology with it, respectively. In order to analyze the biochemical properties, ram cDNA was engineered and inserted into a bacterial expression vector; this allowed the production at a high level of soluble recombinant ram p25 in Escherichia coli. The purified ram p25 contained an equimolar amount of GDP. The purified protein bound approximately 1 mol of [35S]guanosine 5'-O-(thiotriphosphate) GTP gamma S)/mol of protein, with a Kd value of 120 nM. [35S]GTP gamma S binding to this protein was inhibited by GTP and GDP, but not by ATP and ADP. In the presence of 10 mM Mg2+, the dissociation of [8,5'-3H]GDP and [35S]GTP gamma S from ram p25 occurred with rates of 0.015 min-1 and 0.004 min-1, respectively, showing that the ram p25 has a higher affinity for GTP than GDP. The rate of release of Pi from [gamma-32P]GTP-bound ram p25 was calculated to be 0.011 min-1. The contribution of guanine nucleotide-binding and GTP-hydrolysis domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 19 resulted in disappearance of [35S]GTP gamma S- and [3H]GDP-binding activity in spite of good expression of the protein. Mutations of Thr41 to Ser, Ala76 to Thr, and Asn133 to His slightly increased the rates of [35S] GTP gamma S binding and [3H]GDP dissociation, but had almost no effects on the manner of [gamma-32P]GTP hydrolysis. Replacement of Gln78 with Leu significantly increased the [3H]GDP dissociation rate (7-fold) and decreased GTP hydrolytic activity considerably.  相似文献   

10.
Receptor-regulated binding of the labeled GTP analog, guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP[S]), to guanine-nucleotide-binding proteins (G-proteins) was studied in porcine atrial membranes enriched in muscarinic acetylcholine (mACh) receptors. Binding of [35S]GTP[S] to the membranes was not or only slightly affected by the cholinergic agonist, carbachol, unless a second nucleotide was simultaneously present in the binding assay. This additional nucleotide requirement was best fulfilled by GDP, being maximally effective at 0.1-1 microM. In contrast, the GDP analog, guanosine 5'-O-(2-thiodiphosphate), could not replace GDP in promoting carbachol-induced increase in [35S]GTP[S] binding. In addition to GDP, agonist-induced stimulation of [35S]GTP[S] binding to porcine atrial membranes required the presence of Mg2+, being half-maximally and maximally effective at about 30 microM and 300 microM, respectively. Addition of NaCl, which decreased control binding measured in the presence of GDP alone, had no effect on the maximal extent of agonist-stimulated binding, but reduced the potency of carbachol in stimulating [35S]GTP[S] binding. Under optimal conditions, carbachol increased the binding of [35S]GTP[S] without apparent lag phase up to about 2.5-fold, with half-maximal and maximal increase being observed at 5-10 microM and 100 microM, respectively. The agonist-induced stimulation was competitively antagonized by the mACh receptor antagonist, atropine. The number of GTP[S] binding sites under receptor control was two--three-fold higher than the number of mACh receptors in the porcine atrial membranes used. Pretreatment of the membranes with pertussis toxin under conditions leading to 95% ADP-ribosylation of the toxin-sensitive G-protein alpha-subunits markedly reduced agonist-stimulated [35S]GTP[S] binding, with, however, about 30% stimulation still remaining. The data presented indicate that agonist-stimulated binding of [35S]GTP[S] to G-proteins can be a sensitive assay for measuring receptor-regulated G-protein activation in native membranes and, furthermore, suggest that one agonist-activated mACh receptor can activate two or three cardiac G-proteins, being mainly members of the pertussis-toxin-sensitive G-proteins.  相似文献   

11.
ATP dose-dependently inhibited rat 125I-ANP-(99-126) binding to membranes from the human neuroblastoma cell line NB-OK-1 by increasing the KD value for the hormone without altering the Bmax value. After a 20 min preincubation with 37.5 pM 125I-ANP-(99-126) and 0.5 mM ATP, followed by the addition of 0.3 microM unlabelled ANP-(99-126), the proportion of rapidly dissociating receptors was 4-times higher than in the absence of ATP. The other nucleotides ADP, AMP, AMP-PNP, ATP gamma S, GTP, GDP, GMP, GMP-PNP and GTP gamma S were also inhibitory but with a lower potency and/or efficacy. Binding equilibrium data were satisfactorily simulated by a computer program based on partially competitive binding of ANP-(99-126) and the nucleotides, and this, together with the data on dissociation kinetics, strongly suggests that several nucleotides, when added at concentrations up to 1 mM, form a ternary ANP-receptor-nucleotide complex.  相似文献   

12.
We have investigated (by use of intact and saponinpermeabilized canine hepatocytes) the roles of Mg2+ and guanyl nucleotides in regulating glucagon-receptor interactions. In contrast to intact cells, saponinpermeabilized hepatocytes bind [[125I]iodo-Tyr10]glucagon according to a single first-order process and exhibit a single apparent dissociation constant for glucagon binding during steady-state incubations. Further analysis of the permeabilized cell system demonstrated (a) the temperature-sensitive action of Mg2+ to enhance the extent and affinity of glucagon-receptor interactions at steady-state, (b) the conversion of Mg(2+)-independent hormone-receptor complexes to Mg(2+)-dependent complexes, (c) the effect of guanyl nucleotides to inhibit specifically the Mg(2+)-dependent component of glucagon-receptor interactions, (d) the more rapid association of glucagon with receptor during cell incubations occurring in the presence of guanyl nucleotides or in the absence of Mg2+, and (e) the ability of guanyl nucleotides to induce both high and low affinity states of glucagon-receptor interactions. Additional experiments identified an effect of cell incubations in the presence of glucagon to limit the subsequent binding of hormone, the ability of GDP, GTP, or guanosine-5'-3-O-(thio)triphosphate (GTP gamma S) to dissociate previously bound glucagon, and a specific requirement for GDP to re-activate the glucagon receptor for additional cycles of hormone binding. A model is presented in which (a) glucagon binds to receptor in a Mg(2+)-independent fashion, (b) glucagon-receptor complexes are converted to a Mg(2+)-dependent state, (c) guanyl nucleotide exchange initiates both an alteration in glucagon-receptor affinity and the subsequent dissociation of hormone, and (d) in the context of the intact cell, G protein-mediated hydrolysis of GTP to GDP is required to reinitialize the system.  相似文献   

13.
K Shiozaki  T Haga 《Biochemistry》1992,31(43):10634-10642
Muscarinic acetylcholine receptors (mAChR) purified from porcine atrium were reconstituted into lipid vesicles with GTP-binding regulatory proteins (G proteins, Gi, Go, or Gn) purified from porcine cerebrum. Apparent affinities of the reconstituted mAChR and G proteins for carbachol and GDP, respectively, were estimated from the effects of these ligands on the binding of [3H]-L-quinuclidinyl benzilate ([3H]QNB) to mAChR and [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) to G proteins in the presence of different concentrations of MgCl2. A total of 30-35% of reconstituted mAChRs exhibited low affinity for carbamylcholine, irrespective of the presence or absence of guanine nucleotides, and the remainder of the mAChRs showed high affinities for carbamylcholine in the absence of GTP or GDP and a low affinity in their presence. The affinity for carbamylcholine in the absence of guanine nucleotides, but not in their presence, increased with increases in MgCl2 concentration. Apparent Kd's for carbamylcholine were estimated to be approximately 100 microM in the presence of guanine nucleotides, 1.5 microM in the absence of guanine nucleotide and Mg2+ (< 0.1 microM), and 0.1 microM in the absence of guanine nucleotide and the presence of MgCl2 (10 mM). These results indicate that mAChRs may assume at least three different conformations that are characterized by different affinities for agonists. Furthermore, the data suggest that MgCl2 is not necessary for the formation of the mAChR-G protein complex, but can induce a conformational change in the complex. On the other hand, the presence of MgCl2 was necessary for carbamylcholine to influence the binding of guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The interaction of nucleotides with pertussis toxin (PT), and their effects on the ability of the toxin to ADP-ribosylate pure Ni, were evaluated. [32P]ATP (10 nM) bound directly to dithiothreitol-activated PT. This binding was competitively inhibited by nucleotides and anions with the following IC50 concentrations in order of decreasing potency: ATP = ATP gamma S (adenosine-5'-O-(3-thiotriphosphate)) = 0.2-0.3 microM, GDP beta S (guanosine-5'-O-(2-thiodiphosphate)) = 2-3 microM, GTP gamma S (guanosine-5'-O-(3-thiotriphosphate)) = 10-15 microM, ADP = 20-25 microM, GTP = 30-40 microM, GMP-P(NH)P (guanyl-5'-yl imidodiphosphate) = 100-150 microM, GDP = 150-200 microM, Pi = SO4(2-) = 20 mM and Cl- = acetate = 30-35 mM. Treatment of PT with ATP, AMP-P(NH)P, GTP, GDP, or GDP beta S, resulted in a stimulated state of NAD+-Ni ADP-ribosyltransferase activity. Addition of ATP, AMP-P(NH)P (adenyl-5'-yl imidodiphosphate), GTP, GDP, and GDP beta S to the ADP-ribosylation reactions resulted in increased rates of ADP-ribosyl-Ni formation. It is concluded that these effects on the nucleotides are due to their action to stimulate the activity of PT. At concentrations of PT between 0.04 and 0.4 microgram/ml, the stimulation of ADP-ribosylation of Ni effected by nucleotides was hysteretic in nature, exhibiting an approximately 25-min long lag when GDP was used as the activating nucleotide. These lags decreased with increasing concentrations of PT, and were abolished by pretreatment of the toxin with GDP or ATP. Preliminary incubation of Ni with GDP had no effect on the lag in its ADP-ribosylation by non-nucleotide treated PT. Addition of divalent cations (Mg2+, Mn2+, and Ca2+) inhibited formation of ADP-ribosyl-Ni, possibly by causing aggregation and denaturation of Ni. This is the first demonstration that both adenine and guanine nucleotides interact directly with PT and act to stimulate its activity to ADP-ribosylate Ni, and that guanine nucleotides do so regardless of whether they are nucleoside di- or triphosphates.  相似文献   

15.
ADP receptor-regulated binding of the labeled GTP analog, guanosine 5'-O-(3-[35S]thiotriphosphate) ([35S]GTP[gamma S]), to guanine-nucleotide-binding proteins (G proteins) was studied in human platelet membranes. The potent ADP receptor agonist, 2-methyl-thio-adenosine 5'-diphosphate (2MeSADP), a non-hydrolyzable analog of ADP, increased the binding of [35S]GTP[gamma S] without apparent lag phase. Under optimal conditions, i.e. in the presence of GDP (1-10 microM), 2MeSADP increased the binding up to about threefold, with half-maximal and maximal increase observed at 10 nM and 1 microM 2MeSADP, respectively. ADP itself increased the binding of [35S]GTP[gamma S] by maximally about twofold, with half-maximal increase occurring at 0.1 microM ADP. The agonist-induced stimulation was competitively antagonized by the ADP receptor(s) antagonist, (1S)-adenosine 5'-O-(1-thiotriphosphate) [(Sp)-ATP[alpha S]]. Other platelet receptor agonists known to act through receptors coupled to G proteins also increased binding of [35S]GTP[gamma S] in human platelet membranes, but without being inhibited by (Sp)-ATP[alpha S]. The data presented indicate that the platelet ADP receptor(s) can interact with and efficiently activate G proteins, the nature of which remains to be identified.  相似文献   

16.
Cultured pituitary cells prelabeled with myo-[2-3H] inositol were permeabilized by ATP4-, exposed to guanine nucleotides and resealed by Mg2+. Addition of guanosine 5'-0-(3-thio triphosphate) (GTP gamma S) to permeabilized cells, or gonadotropin releasing hormone (GnRH) to resealed cells, resulted in enhanced phospholipase C activity as determined by [3H] inositol phosphate (Ins-P) production. The effect was not additive, but the combined effect was partially inhibited by guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) or by neomycin. Surprisingly, addition of GDP beta S (100-600 microM) on its own resulted in a dose-related increase in [3H]Ins-P accumulation. Several nucleoside triphosphates stimulated phospholipase C activity in permeabilized pituitary cells with the following order: UTP greater than GTP gamma S greater than ATP greater than CTP. The stimulatory effect of UTP, ATP and CTP, but not GTP gamma S or GDP beta S, could also be demonstrated in normal pituitary cells suggesting a receptor-activated mechanism. GTP and GTP gamma S decreased the affinity of GnRH binding to pituitary membranes and stimulated LH secretion in permeabilized cells. These results suggest the existence of at least two G-proteins (stimulatory and inhibitory) which are involved in phospholipase C activation and GnRH action in pituitary cells.  相似文献   

17.
There are two functionally and physically distinct types of guanyl nucleotide site associated with the adenylate cyclase system of pigeon erythrocytes. One is on the well known regulatory protein, N, that mediates the adenylate cyclase response to hormones, guanyl nucleotides and fluoride, and is the substrate for ADP-ribosylation by cholera toxin. We now describe a second site that must be occupied by GTP or an analog of GTP before N can be ADP-ribosylated. We call this second site S. It differs from the site on N in many respects. GTP appears to be rapidly hydrolyzed when it is bound to N but not when bound at S. GTP analogs such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) bind stably to both sites but the binding of GTP gamma S to N is more sensitive to EDTA and is more easily prevented by guanosine 5'-O-(2-thiodiphosphate). The nucleotide binding only to S is promoted by the cytosolic protein required by cholera toxin. Isoproterenol decreases GTP gamma S binding to S while indirectly increasing GTP gamma S binding to N. By adjusting the binding conditions, the nucleotides bound functionally to N and S can be varied independently and then the effect of ADP-ribosylation upon the adenylate cyclase activity can be seen to depend on the type of nucleotide bound to N. This activity rises, falls slightly, or remains at zero, if N is occupied by GTP, GTP gamma S, or guanosine 5'-O-(2-thiodiphosphate, respectively.  相似文献   

18.
《Life sciences》1996,59(8):659-668
Cannabinoid receptors belong to the class of G-protein-coupled receptors which inhibit adenylyl cyclase. Coupling of receptors to G-proteins can be assessed by the ability of agonists to stimulate guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding in the presence of excess GDP. The present study examined the effect of cannabinoid agonists on [35S]GTPγS binding in rat brain membranes. Assays were conducted with 0.05 nM [35S]GTPγS, incubated with rat cerebellar membranes, 1–30 μM GDP and the cannabinoid agonist WIN 55212-2. Results showed that the ability of WIN 55212-2 to stimulate [35S]GTPγS binding increased with increasing concentrations of GDP, with 10–30 μM GDP providing approximately 150–200% stimulation by the cannabinoid agonist. The pharmacology of cannabinoid agonist stimulation of [35S]GTPγS binding paralleled that of previously reported receptor binding and adenylyl cyclase assays, and agonist stimulation of [35S]GTPγS binding was blocked by the cannabinoid antagonist SR141716A. Brain regional studies revealed widespread stimulation of [35S]GTPγS binding by WIN 55212-2 in a number of brain areas, consistent with in vitro [35S]GTPγS autoradiography. These results demonstrate that [35S]GTPγS binding in the presence of excess GDP is an effective measure of cannabinoid receptor coupling to G-proteins in brain membranes.  相似文献   

19.
Activation of epidermal growth factor (EGF) receptors stimulates inositol phosphate production in rat hepatocytes via a pertussis toxin-sensitive mechanism, suggesting the involvement of a G protein in the process. Since the first event after receptor-G protein interaction is exchange of GTP for GDP on the G protein, the effect of EGF was measured on the initial rates of guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) association and [alpha-32P]GDP dissociation in rat hepatocyte membranes. The initial rate of [35S]GTP gamma S binding was stimulated by EGF, with a maximal effect observed at 8 nM EGF. EGF also increased the initial rate of [alpha-32P]GDP dissociation. The effect of EGF on [35S]GTP gamma S association was blocked by boiling the peptide for 5 min in 5 mM dithiothreitol or by incubation of the membranes with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). EGF-stimulated [35S]GTP gamma S binding was completely abolished in hepatocyte membranes prepared from pertussis toxin-treated rats and was inhibited in hepatocyte membranes that were treated directly with the resolved A-subunit of pertussis toxin. The amount of guanine nucleotide binding affected by occupation of the EGF receptor was approximately 6 pmol/mg of membrane protein. Occupation of angiotensin II receptors, which are known to couple to G proteins in hepatic membranes, also stimulated [35S]GTP gamma S association with and [alpha-32P]GDP dissociation from the membranes. The effect of angiotensin II on [alpha-32P]GDP dissociation was blocked by the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II, demonstrating that the guanine nucleotide binding was receptor-mediated. In A431 human epidermoid carcinoma cells, EGF stimulates inositol lipid breakdown, but the effect is not blocked by treatment of the cells with pertussis toxin. In these cells, EGF had no effect on [35S]GTP gamma S binding. Occupation of the beta-adrenergic receptor in A431 cell membranes with isoproterenol did stimulate [35S] GTP gamma S binding, and the effect could be completely blocked by l-propranolol. These results support the concept that in hepatocyte membranes, EGF receptors interact with a pertussis toxin-sensitive G protein via a mechanism similar to other hormone receptor-G protein interactions, but that in A431 human epidermoid carcinoma cells, EGF may activate phospholipase C via different mechanisms.  相似文献   

20.
Whereas the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), induced NADPH-oxidase-catalyzed superoxide (O2-) formation in human neutrophils, purine and pyrimidine nucleotides per se did not stimulate NADPH oxidase but enhanced O2- formation induced by submaximally and maximally stimulatory concentrations of fMet-Leu-Phe up to fivefold. On the other hand, FMet-Leu-Phe primed neutrophils to generate O2- upon exposure to nucleotides. At a concentration of 100 microM, purine nucleotides enhanced O2- formation in the effectiveness order adenosine 5'-O-[3-thio]triphosphate (ATP[gamma S]) greater than ITP greater than guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) greater than ATP = adenosine 5'-O-[2-thio]triphosphate (Sp-diastereomer) = GTP = guanosine 5'-O-[2-thio]diphosphate (GDP[beta S] = ADP greater than adenosine 5'-[beta, gamma-imido]triphosphate = adenosine 5'-O-[2-thio]triphosphate] (Rp-diastereomer). Pyrimidine nucleotides stimulated fMet-Leu-Phe-induced O2- formation in the effectiveness order uridine 5'-O-[3-thio]triphosphate (UTP[gamma S]) = UTP greater than CTP. Uracil (UDP[beta S]) = uridine 5'-O[2-thio]triphosphate (Rp-diastereomer) (Rp)-UTP[beta S]) = UTP greater than CTP. Uracil nucleotides were similarly effective potentiators of O2- formation as the corresponding adenine nucleotides. GDP[beta S] and UDP[beta S] synergistically enhanced the stimulatory effects of ATP[gamma S], GTP[gamma S] and UTP[gamma S]. Purine and pyrimidine nucleotides did not induce degranulation in neutrophils but potentiated fMet-Leu-Phe-induced release of beta-glucuronidase with similar nucleotide specificities as for O2- formation. In contrast, nucleotides per se induced aggregation of neutrophils. Treatment with pertussis toxin prevented aggregation induced by both nucleotides and fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via nucleotide receptors, the nucleotide specificity of which is different from nucleotide receptors in other cell types. Neutrophil nucleotide receptors are coupled to guanine-nucleotide-binding proteins. As nucleotides are released from cells under physiological and pathological conditions, they may play roles as intercellular signal molecules in neutrophil activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号