首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In gradients of external chemo-attractant, mammalian neutrophilic leukocytes (neutrophils) and Dictyostelium discoideum amoebae adopt a polarized morphology and selectively accumulate lipid products of phosphatidylinositol-3-OH kinases (PI(3)Ks), including PtdIns(3,4,5)P(3), at their up-gradient edges; the internal PtdIns(3,4,5)P(3) gradient substantially exceeds that of the external attractant. An accompanying report presents evidence for a positive feedback loop that amplifies the gradient of internal signal: PtdIns(3,4,5)P(3) at the leading edge stimulates its own accumulation by inducing activation of one or more Rho GTPases (Rac, Cdc42, and/or Rho), which in turn increase PtdIns(3,4,5)P(3) accumulation. Here we show that interruption of this feedback by treatment with PI(3)K inhibitors reduces the size and stability of pseudopods and causes cells to migrate in jerky trajectories that deviate more from the up-gradient direction than do those of controls. Moreover, amplification of the internal PtdIns(3,4,5)P(3) gradient is markedly impaired by latrunculin or jasplakinolide, toxins that inhibit polymerization or depolymerization of actin, respectively. Thus reciprocal interplay between PtdIns(3,4,5)P(3) and polymerized actin initiates and maintains the asymmetry of intracellular signals responsible for cell polarity and directed motility.  相似文献   

2.
When presented with a gradient of chemoattractant, many eukaryotic cells respond with polarized accumulation of the phospholipid PtdIns(3,4,5)P(3). This lipid asymmetry is one of the earliest readouts of polarity in neutrophils, Dictyostelium discoideum and fibroblasts. However, the mechanisms that regulate PtdInsP(3) polarization are not well understood. Using a cationic lipid shuttling system, we have delivered exogenous PtdInsP(3) to neutrophils. Exogenous PtdInsP(3) elicits accumulation of endogenous PtdInsP(3) in a positive feedback loop that requires endogenous phosphatidylinositol-3-OH kinases (PI(3)Ks) and Rho family GTPases. This feedback loop is important for establishing PtdInsP(3) polarity in response to both chemoattractant and to exogenous PtdInsP(3); it may function through a self-organizing pattern formation system. Emergent properties of positive and negative regulatory links between PtdInsP(3) and Rho family GTPases may constitute a broadly conserved module for the establishment of cell polarity during eukaryotic chemotaxis.  相似文献   

3.
Yang HW  Shin MG  Lee S  Kim JR  Park WS  Cho KH  Meyer T  Do Heo W 《Molecular cell》2012,47(2):281-290
Phosphoinositide 3-kinases (PI3Ks) and Ras and Rho family small GTPases are key regulators of cell polarization, motility, and chemotaxis. They influence each other's activities by direct and indirect feedback processes that are only partially understood. Here, we show that 21 small GTPase homologs activate PI3K. Using a microscopy-based binding assay, we show that K-Ras, H-Ras, and five homologous Ras family small GTPases function upstream of PI3K by directly binding the PI3K catalytic subunit, p110. In contrast, several Rho family small GTPases activated PI3K by an indirect cooperative positive feedback that required a combination of Rac, CDC42, and RhoG small GTPase activities. Thus, a distributed network of Ras and Rho family small GTPases induces and reinforces PI3K activity, explaining past challenges to elucidate the specific relevance of different small GTPases in regulating PI3K and controlling cell polarization and chemotaxis.  相似文献   

4.
Phosphoinositide 3-kinase in disease: timing, location, and scaffolding   总被引:10,自引:0,他引:10  
When PI3Ks are deregulated by aberrant surface receptors or modulators, accumulation of PtdIns(3,4,5)P3 leads to increased cell growth, proliferation and contact-independent survival. The PI3K/PKB/TOR axis controls protein synthesis and growth, while PtdIns(3,4,5)P3-mediated activation of Rho GTPases directs cell motility. PI3K activity has been linked to the formation of tumors, metastasis, chronic inflammation, allergy and cardiovascular disease. Although increased PtdIns(3,4,5)P3 is a well-established cause of disease, it is seldom known which PI3K isoform is implied. Recent work has demonstrated that PI3Kgamma contributes to the control of cAMP levels in the cardiac system, where the protein acts as a scaffold, but not as a lipid kinase.  相似文献   

5.
Rho GTPases are versatile regulators of cell shape that act on the actin cytoskeleton. Studies using Rho GTPase mutants have shown that, in some cells, Rac1 and Cdc42 regulate the formation of lamellipodia and filopodia, respectively at the leading edge, whereas RhoA mediates contraction at the rear of moving cells. However, recent reports have described a zone of RhoA/ROCK activation at the front of cells undergoing motility. In this study, we use a FRET-based RhoA biosensor to show that RhoA activation localizes to the leading edge of EGF-stimulated cells. Inhibition of Rho or ROCK enhanced protrusion, yet markedly inhibited cell motility; these changes correlated with a marked activation of Rac-1 at the cell edge. Surprisingly, whereas EGF-stimulated protrusion in control MTLn3 cells is Rac-independent and Cdc42-dependent, the opposite pattern is observed in MTLn3 cells after inhibition of ROCK. Thus, Rho and ROCK suppress Rac-1 activation at the leading edge, and inhibition of ROCK causes a switch between Cdc42 and Rac-1 as the dominant Rho GTPase driving protrusion in carcinoma cells. These data describe a novel role for Rho in coordinating signaling by Rac and Cdc42.  相似文献   

6.
Transendothelial migration (TEM) is a tightly regulated process whereby leukocytes migrate from the vasculature into tissues. Rho guanosine triphosphatases (GTPases) are implicated in TEM, but the contributions of individual Rho family members are not known. In this study, we use an RNA interference screen to identify which Rho GTPases affect T cell TEM and demonstrate that RhoA is critical for this process. RhoA depletion leads to loss of migratory polarity; cells lack both leading edge and uropod structures and, instead, have stable narrow protrusions with delocalized protrusions and contractions. By imaging a RhoA activity biosensor in transmigrating T cells, we find that RhoA is locally and dynamically activated at the leading edge, where its activation precedes both extension and retraction events, and in the uropod, where it is associated with ROCK-mediated contraction. The Rho guanine nucleotide exchange factor (GEF) GEF-H1 contributes to uropod contraction but does not affect the leading edge. Our data indicate that RhoA activity is dynamically regulated at the front and back of T cells to coordinate TEM.  相似文献   

7.
Rho and Arf family small GTPases are well-known regulators of cellular actin dynamics. We recently identified ARAP3, a member of the ARAP family of dual GTPase activating proteins (GAPs) for Arf and Rho family GTPases, in a screen for PtdIns(3,4,5)P(3) binding proteins. PtdIns(3,4,5)P(3) is the lipid product of class I phosphoinositide 3OH-kinases (PI3Ks) and is a signaling molecule used by growth factor receptors and integrins in the regulation of cell dynamics. We report here that as a Rho GAP, ARAP3 prefers RhoA as a substrate and that it can be activated in vitro by the direct binding of Rap proteins to a neighbouring Ras binding domain (RBD). This activation by Rap is GTP dependent and specific for Rap versus other Ras family members. We found no evidence for direct regulation of ARAP3's Rho GAP activity by PtdIns(3,4,5)P(3) in vitro, but PI3K activity was required for activation by Rap in a cellular context, suggesting that PtdIns(3,4,5)P(3)-dependent translocation of ARAP3 to the plasma membrane may be required for further activation by Rap. Our results indicate that ARAP3 is a Rap-effector that plays an important role in mediating PI3K-dependent crosstalk between Ras, Rho, and Arf family small GTPases.  相似文献   

8.
Shear stress induces endothelial polarization and migration in the direction of flow accompanied by extensive remodeling of the actin cytoskeleton. The GTPases RhoA, Rac1, and Cdc42 are known to regulate cell shape changes through effects on the cytoskeleton and cell adhesion. We show here that all three GTPases become rapidly activated by shear stress, and that each is important for different aspects of the endothelial response. RhoA was activated within 5 min after stimulation with shear stress and led to cell rounding via Rho-kinase. Subsequently, the cells respread and elongated within the direction of shear stress as RhoA activity returned to baseline and Rac1 and Cdc42 reached peak activation. Cell elongation required Rac1 and Cdc42 but not phosphatidylinositide 3-kinases. Cdc42 and PI3Ks were not required to establish shear stress-induced polarity although they contributed to optimal migration speed. Instead, Rho and Rac1 regulated directionality of cell movement. Inhibition of Rho or Rho-kinase did not affect the cell speed but significantly increased cell displacement. Our results show that endothelial cells reorient in response to shear stress by a two-step process involving Rho-induced depolarization, followed by Rho/Rac-mediated polarization and migration in the direction of flow.  相似文献   

9.
Phosphatidylinositol 3-kinase lipid products and the Rho GTPases play a central role in transmitting information from chemotactic receptors to the effectors of cell polarity, and recent advances in the field have allowed us to understand these roles more clearly. Emergent properties of positive and negative regulation of these molecules may account for the establishment of cell polarity during chemotaxis for a wide range of cells from Dictyostelium to fibroblasts to neutrophils.  相似文献   

10.
Cell motility and cell polarity are essential for morphogenesis, immune system function, and tissue repair. Many animal cells move by crawling, and one main driving force for movement is derived from the coordinated assembly and disassembly of actin filaments. As tissue culture cells migrate to close a scratch wound, this directional extension is accompanied by Golgi apparatus reorientation, to face the leading wound edge, giving the motile cell inherent polarity aligned relative to the wound edge and to the direction of cell migration. Cellular proteins essential for actin polymerization downstream of Rho family GTPases include the Arp2/3 complex as an actin nucleator and members of the Wiskott-Aldrich Syndrome protein (WASP) family as activators of the Arp2/3 complex. We therefore analyzed the involvement of the Arp2/3 complex and WASP-family proteins in in vitro wound healing assays using NIH 3T3 fibroblasts and astrocytes. In NIH 3T3 cells, we found that actin and Arp2/3 complex contributed to cell polarity establishment. Moreover, overexpression of N-terminal fragments of Scar2 (but not N-WASP or Scar1 or Scar3) interfere with NIH 3T3 Golgi polarization but not with cell migration. In contrast, actin, Arp2/3, and WASP-family proteins did not appear to be involved in Golgi polarization in astrocytes. Our results thus indicate that the requirement for Golgi polarity establishment is cell-type specific. Furthermore, in NIH 3T3 cells, Scar2 and the Arp2/3 complex appear to be involved in the establishment and maintenance of Golgi polarity during directed migration.  相似文献   

11.
Leukocyte polarization in cell migration and immune interactions.   总被引:33,自引:0,他引:33       下载免费PDF全文
Cell migration plays a key role in a wide variety of biological phenomena. This process is particularly important for leukocyte function and the inflammatory response. Prior to migration leukocytes undergo polarization, with the formation of a lamellipodium at the leading edge and a uropod at the trailing edge. This cell shape allows them to convert cytoskeletal forces into net cell-body displacement. Leukocyte chemoattractants, including chemokines, provide directional cues for leukocyte motility, and concomitantly induce polarization. Chemoattractant receptors, integrins and other adhesion molecules, cytoskeletal proteins and intracellular regulatory molecules change their cellular localization during cell polarization. A complex system of signal transduction molecules, including tyrosine kinases, lipid kinases, second messengers and members of the Rho family of small GTPases is thought to regulate the cytoskeletal rearrangements underlying leukocyte polarization and migration. The elucidation of the mechanisms and signals that control this complex reorganization will lead to a better understanding of critical questions in cell biology of leukocyte migration and polarity.  相似文献   

12.
The p19(Arf)-p53 tumor suppressor pathway plays a critical role in cell-cycle checkpoint control and apoptosis, whereas Rho family small GTPases are key regulators of actin structure and cell motility. By using primary mouse embryonic fibroblasts that lack Arf, p53, or both, we studied the involvement of the p19(Arf)-p53 pathway in the regulation of cell motility and its relationship with Rho GTPases. Deletion of Arf and/or p53 led to actin cytoskeleton reorganization and a significant increase in cell motility. The endogenous phosphoinositide (PI) 3- kinase and Rac1 activities were elevated in Arf(-/-) and p53(-/-) cells, and these activities are required for p19(Arf)- and p53-regulated migration. Reintroduction of the wild type Arf or p53 genes into Arf(-/-) or p53(-/-) cells reversed the PI 3-kinase and Rho GTPase activities as well as the migration phenotype. These results suggest a functional relationship between an established tumor suppressor pathway and a signaling module that controls actin structure and cell motility and show that p19(Arf) and p53 negatively regulate cell migration by suppression of PI 3-kinase and Rac1 activities.  相似文献   

13.
Rho GTPases participate in various cellular processes, including normal and tumor cell migration. It has been reported that RhoA is targeted for degradation at the leading edge of migrating cells by the E3 ubiquitin ligase Smurf1, and that this is required for the formation of protrusions. We report that Smurf1-dependent RhoA degradation in tumor cells results in the down-regulation of Rho kinase (ROCK) activity and myosin light chain 2 (MLC2) phosphorylation at the cell periphery. The localized inhibition of contractile forces is necessary for the formation of lamellipodia and for tumor cell motility in 2D tissue culture assays. In 3D invasion assays, and in in vivo tumor cell migration, the inhibition of Smurf1 induces a mesenchymal-amoeboid-like transition that is associated with a more invasive phenotype. Our results suggest that Smurf1 is a pivotal regulator of tumor cell movement through its regulation of RhoA signaling.  相似文献   

14.
Although it is known that the spatial coordination of Rac and Rho activity is essential for cell migration, the molecular mechanisms regulating these GTPases during migration are unknown. We found that the expression of constitutively activated R-Ras (38V) blocked membrane protrusion and random migration. In contrast, expression of dominant negative R-Ras (41A) enhanced migrational persistence and membrane protrusion. Endogenous R-Ras is necessary for cell migration, as cells that were transfected with siRNA for R-Ras did not migrate. Expression of R-Ras (38V) decreased Rac activity and increased Rho activity around the entire cell periphery, whereas expression of dominant negative R-Ras (41A) showed the converse, suggesting that R-Ras can spatially activate Rho and inactivate Rac. Consistent with this role, endogenous R-Ras localized and was preferentially activated at the leading edge of migratory cells in response to adhesion. The effects of R-Ras on cell migration are mediated by PI3-Kinase, as an effector mutant that uncouples PI3-Kinase binding from R-Ras (38V) rescued migration. From these data, we hypothesize that R-Ras plays a key role in cell migration by locally regulating the switch from Rac to Rho activity after membrane protrusion and adhesion.  相似文献   

15.
Gradient sensing, polarization, and chemotaxis of motile cells involve the actin cytoskeleton, and regulatory modules, including the phosphoinositides (PIs), their kinases/phosphatases, and small GTPases (Rho proteins). Here we model their individual components (PIP1, PIP2, PIP3; PTEN, PI3K, PI5K; Cdc42, Rac, Rho; Arp2/3, and actin), their interconversions, interactions, and modular functions in the context of a one-dimensional dynamic model for protrusive cell motility, with parameter values derived from in vitro and in vivo studies. In response to a spatially graded stimulus, the model produces stable amplified internal profiles of regulatory components, and initiates persistent motility (consistent with experimental observations). By connecting the modules, we find that Rho GTPases work as a spatial switch, and that the PIs filter noise, and define the front versus back. Relatively fast PI diffusion also leads to selection of a unique pattern of Rho distribution from a collection of possible patterns. We use the model to explore the importance of specific hypothesized interactions, to explore mutant phenotypes, and to study the role of actin polymerization in the maintenance of the PI asymmetry. We also suggest a mechanism to explain the spatial exclusion of Cdc42 and PTEN and the inability of cells lacking active Cdc42 to properly detect chemoattractant gradients.  相似文献   

16.
Cell migration is essential for many biological processes in animals and is a complex highly co‐ordinated process that involves cell polarization, actin‐driven protrusion and formation and turnover of cell adhesions. The PI3K (phosphoinositide 3‐kinase) family of lipid kinases regulate cell migration in many different cell types, both through direct binding of proteins to their lipid products and indirectly through crosstalk with other pathways, such as Rho GTPase signalling. Emerging evidence suggests that the involvement of PI3Ks at different stages of migration varies even within one cell type, and is dependent on the combination of external stimuli, as well as on the signalling status of the cell. In addition, it appears that different PI3K isoforms have distinct roles in cell polarization and migration. This review describes how PI3K signalling is regulated by pro‐migratory stimuli, and the diverse ways in which PI3K‐mediated signal transduction contributes to different aspects of cell migration.  相似文献   

17.
We have undertaken the first detailed analysis of Rho GTPase function during vertebrate development by analyzing how RhoA and Rac1 control convergent extension of axial mesoderm during Xenopus gastrulation. Monitoring of a number of parameters in time-lapse recordings of mesoderm explants revealed that Rac and Rho have both distinct and overlapping roles in regulating the motility of axial mesoderm cells. The cell behaviors revealed by activated or inhibitory versions of these GTPases in native tissue were clearly distinct from those previously documented in cultured fibroblasts. The dynamic properties and polarity of protrusive activity, along with lamellipodia formation, were controlled by the two GTPases operating in a partially redundant manner, while Rho and Rac contributed separately to cell shape and filopodia formation. We propose that Rho and Rac operate in distinct signaling pathways that are integrated to control cell motility during convergent extension.  相似文献   

18.
In vivo, apoptotic cells are removed by surrounding phagocytes, a process thought to be essential for tissue remodeling and the resolution of inflammation [1]. Although apoptotic cells are known to be efficiently phagocytosed by macrophages, the mechanisms whereby their interaction with the phagocytes triggers their engulfment have not been described in mammals. Here, we report that primary murine bone marrow-derived macrophages (using alpha(v)beta(3) integrin for apoptotic cell uptake) extend lamellipodia to engulf apoptotic cells and form an actin cup where phosphotyrosine accumulates. Rho GTPases and PI 3-kinases have been widely implicated in the regulation of the actin cytoskeleton [2, 3]. We show that inhibition of Rho GTPases by Clostridium difficile toxin B prevents apoptotic cell phagocytosis and inhibits the accumulation of both F-actin and phosphotyrosine. Importantly, the Rho GTPases Rac1 and Cdc42 are required for apoptotic cell uptake whereas Rho inhibition enhances uptake. The PI 3-kinase inhibitor LY294002 also prevents apoptotic cell phagocytosis but has no effect on the accumulation of F actin and phosphotyrosine. These results indicate that both Rho GTPases and PI 3-kinases are involved in apoptotic cell phagocytosis but that they play distinct roles in this process.  相似文献   

19.
Increased intracellular H(+) efflux is speculated to be an evolutionarily conserved mechanism necessary for rapid assembly of cytoskeletal filaments and for morphological polarity during cell motility. In Dictyostelium discoideum, increased intracellular pH through undefined transport mechanisms plays a key role in directed cell movement. We report that a developmentally regulated Na-H exchanger in Dictyostelium discoideum (DdNHE1) localizes to the leading edge of polarized cells and is necessary for intracellular pH homeostasis and for efficient chemotaxis. Starved DdNHE1-null cells (Ddnhe1(-)) differentiate, and in response to the chemoattractant cAMP they retain directional sensing; however, they cannot attain a polarized morphology, but instead extend mislocalized pseudopodia around the cell and exhibit decreased velocity. Consistent with impaired polarity, in response to chemoattractant, Ddnhe1(-) cells lack a leading edge localization of F-actin and have significantly attenuated de novo F-actin polymerization but increased abundance of membrane-associated phosphatidylinositol 3,4,5-trisphosphate (PI((3,4,5))P(3)). These findings indicate that during chemotaxis DdNHE1 is necessary for establishing the kinetics of actin polymerization and PI((3,4,5))P(3) production and for attaining a polarized phenotype.  相似文献   

20.
Cell movement is essential during embryogenesis to establish tissue patterns and to drive morphogenetic pathways and in the adult for tissue repair and to direct cells to sites of infection. Animal cells move by crawling and the driving force is derived primarily from the coordinated assembly and disassembly of actin filaments. The small GTPases, Rho, Rac, and Cdc42, regulate the organization of actin filaments and we have analyzed their contributions to the movement of primary embryo fibroblasts in an in vitro wound healing assay. Rac is essential for the protrusion of lamellipodia and for forward movement. Cdc42 is required to maintain cell polarity, which includes the localization of lamellipodial activity to the leading edge and the reorientation of the Golgi apparatus in the direction of movement. Rho is required to maintain cell adhesion during movement, but stress fibers and focal adhesions are not required. Finally, Ras regulates focal adhesion and stress fiber turnover and this is essential for cell movement. We conclude that the signal transduction pathways controlled by the four small GTPases, Rho, Rac, Cdc42, and Ras, cooperate to promote cell movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号