首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone marrow mesenchymal stem cells (BMSCs), tissue-engineered cardiac patch, and therapeutic gene have all been proposed as promising therapy strategies for cardiac repair after myocardial infarction. In our study, BMSCs were modified with insulin-like growth factor-1 (IGF-1) gene, loaded into a fibrin patch, and then transplanted into a porcine model of ischemia/reperfusion (I/R) myocardium injury. The results demonstrated that IGF-1 gene overexpression could promote proliferation of endothelial cells and cardiomyocyte-like differentiation of BMSCs in vitro. Four weeks after transplantation of fibrin patch loaded with gene-modified BMSCs, IGF-1 overexpression could successfully promote angiogenesis, inhibit remodeling, increase grafted cell survival and reduce apoptosis. In conclusion, the integrated strategy, which combined fibrin patch with IGF-1 gene modified BMSCs, could promote the histological cardiac repair for a clinically relevant porcine model of I/R myocardium injury.  相似文献   

2.
Calcitonin gene-related peptide (CGRP) has a beneficial effect in pulmonary hypertension and is a target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold promise for use in adult stem cell-based ex vivo gene therapy. To test the hypothesis that genetically engineered MSCs secreting CGRP can inhibit vascular smooth muscle cell proliferation, rat MSCs were isolated, ex vivo expanded, and transduced with adenovirus containing CGRP. Immunocytochemical analysis demonstrated that wild type rat MSCs express markers specific for stem cells, endothelial cells, and smooth muscle cells including Thy-1, c-Kit, von Willebrand Factor and alpha-smooth muscle actin. Immunocytochemistry confirmed the expression of CGRP by the transduced rat MSCs. The transduced rat MSCs released 10.3+/-1.3 pmol CGRP/1 x 10(6) cells/48 h (mean+/-S.E.M., n=3) into culture medium at MOI 300 and the CGRP-containing culture supernatant from the transduced cells inhibited the proliferation of rat pulmonary artery smooth muscle cells (PASMCs) and rat aortic smooth muscle cells (ASMCs) in culture. Co-culture of the transduced rat MSCs with rat PASMCs or rat ASMCs also inhibited smooth muscle cell proliferation. These findings suggest that this novel adult stem cell-based CGRP gene therapy has potential for the treatment of cardiovascular diseases including pulmonary hypertension.  相似文献   

3.
Human mesenchymal stem cells (hMSC) have proven beneficial in the repair and preservation of infarcted myocardium. Unfortunately, MSCs represent a small portion of the bone marrow and require ex vivo expansion. To further advance the clinical usefulness of cellular cardiomyoplasty, derivation of "MSC-like" cells that can be made available "off-the-shelf" are desirable. Recently, human embryonic stem cell-derived mesenchymal cells (hESC-MC) were described. We investigated the efficacy of hESC-MC for cardiac repair after myocardial infarction (MI) compared to hMSC. Because of increased efficacy of cell delivery, cells were embedded into collagen patches and delivered to infarcted myocardium. Culture of hMSC and hESC-MCs in collagen patches did not induce differentiation or significant loss in viability. Transplantation of hMSC and hES-MC patches onto infarcted myocardium of athymic nude rats prevented adverse changes in infarct wall thickness and fractional area change compared to a non-viable patch control. Hemodynamic assessment showed that hMSCs and hES-MC patch application improved end diastolic pressure equivalently. There were no changes in systolic function. hES-MC and hMSC construct application enhanced neovessel formation compared to a non-viable control, and each cell type had similar efficacy in stimulating endothelial cell growth in vitro. In summary, the use of hES-MC provides similar efficacy for cellular cardiomyoplasty as compared to hMSC and may be considered a suitable alternative for cell therapy.  相似文献   

4.
PURPOSE OF REVIEW: Mesenchymal stem cells (or multipotent stromal cells) are emerging as a potent cell type for cardiac cell therapy. This review describes the potential of cardiac mesenchymal stem cell therapy, but also highlights some recently discovered less favorable mesenchymal stem cell characteristics. RECENT FINDINGS: Mesenchymal stem cells exert a beneficial effect on cardiac function upon administration to the ischemic myocardium. The mode of action does not seem to involve differentiation into cardiomyocytes and vascular cells. A robust effect on revascularization and remodeling is observed, however, most likely mediated by paracrine factors. Recently identified drawbacks associated with cardiac mesenchymal stem cell therapy include differentiation into unwanted mesenchymal cell types such as osteocytes and adipocytes, the occurrence of cytogenetic instability upon prolonged expansion, and immunization when used in an allogeneic setting. SUMMARY: The application of mesenchymal stem cells is a novel strategy with therapeutic potential for cardiac repair. Strategies are needed, however, to optimize their therapeutic potential while minimizing their potential clinical risks.  相似文献   

5.
Both weak survival ability of stem cells and hostile microenvironment are dual dilemma for cell therapy. Adropin, a bioactive substance, has been demonstrated to be cytoprotective. We therefore hypothesized that adropin may produce dual protective effects on the therapeutic potential of stem cells in myocardial infarction by employing an adropin-based dual treatment of promoting stem cell survival in vitro and modifying microenvironment in vivo. In the current study, adropin (25 ng/ml) in vitro reduced hydrogen peroxide-induced apoptosis in rat bone marrow mesenchymal stem cells (MSCs) and improved MSCs survival with increased phosphorylation of Akt and extracellular regulated protein kinases (ERK) l/2. Adropin-induced cytoprotection was blocked by the inhibitors of Akt and ERK1/2. The left main coronary artery of rats was ligated for 3 or 28 days to induce myocardial infarction. Bromodeoxyuridine (BrdU)-labeled MSCs, which were in vitro pretreated with adropin, were in vivo intramyocardially injected after ischemia, following an intravenous injection of 0.2 mg/kg adropin (dual treatment). Compared with MSCs transplantation alone, the dual treatment with adropin reported a higher level of interleukin-10, a lower level of tumor necrosis factor-α and interleukin-1β in plasma at day 3, and higher left ventricular ejection fraction and expression of paracrine factors at day 28, with less myocardial fibrosis and higher capillary density, and produced more surviving BrdU-positive cells at day 3 and 28. In conclusion, our data evidence that adropin-based dual treatment may enhance the therapeutic potential of MSCs to repair myocardium through paracrine mechanism via the pro-survival pathways.Subject terms: Cell death, Heart stem cells  相似文献   

6.
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.  相似文献   

7.
8.
The proepicardial-derived epicardium covers the myocardium and after a process of epithelial–mesenchymal transition (EMT) forms epicardium-derived cells (EPDCs). These cells migrate into the myocardium and show an essential role in the induction of the ventricular compact myocardium and the differentiation of the Purkinje fibres. EPDCs are furthermore the source of the interstitial fibroblast, the coronary smooth muscle cell and the adventitial fibroblast. The possible differentiation into cardiomyocytes, endothelial cells and the recently described telocyte and other cells in the cardiac stem cell niche needs further investigation. Surgically or genetically disturbed epicardial and EPDC differentiation leads to a spectrum of abnormalities varying from thin undifferentiated myocardium, which can be embryonic lethal, to a diminished coronary vascular bed with even absent main coronary arteries. The embryonic potential of EPDCs has been translated to both structural and functional congenital malformations and adult cardiac disease, like development of Ebstein’s malformation, arrhythmia and cardiomyopathies. Furthermore, the use of adult EPDCs as a stem cell source has been explored, showing in an animal model of myocardial ischemia the recapitulation of the embryonic program with improved function, angiogenesis and less adverse remodeling. Combining EPDCs and adult cardiomyocyte progenitor cells synergistically improved these results. The contribution of injected EPDCs was instructive rather than constructive. The finding of reactivation of the endogenous epicardium in ischemia with re-expression of developmental genes and renewed EMT marks the onset of a novel therapeutic focus.  相似文献   

9.
Dysregulation of matrix synthesis during myocardial fibrosis in post-infarct ventricular remodeling contributes to ventricular dysfunction. Bone marrow stem cell transplantation prevents functional deterioration following myocardial infarction. However, effect of myocardial extracellular matrix (ECM) on stem cell differentiation is poorly understood. We investigate the role of collagen matrices and integrin system in cardiac differentiation and engraftment of stem cells in infarcted myocardium. Sternum-derived bone marrow mesenchymal stem cells (MSCs) were differentiated into cardiomyocyte-like cells (CLCs). They were characterized using RT-PCR, immunofluorescence, flow cytometry and functional integrin neutralization assays. CLCs were injected into peri-infarct borders of injured myocardium of Wistar rats one week following left anterior descending (LAD) artery ligation. Cardiac function was analyzed via pressure-volume relationships. Cardiac differentiated CLCs displayed collagen V specificity, which was absent in undifferentiated MSCs. Collagen V, but not collagen I matrix, promoted attachment, proliferation and cardiac differentiation of CLCs. In contrast to β1, αv integrin contributed minimally in the attachment of CLCs on collagen matrices. However, inhibition of αvβ3, but not α2β1 integrin, selectively attenuated troponin T, sarcomeric α-actin and ryanodine 2 receptor gene expression in CLCs. Both MSC and CLC transplantation prevented chamber dilatation and improved contractile function. However, systolic activity in MSC transplanted animals was accompanied by heightened wall stress as demonstrated by elevated myocardial end-diastolic pressure and prolonged tissue relaxation time. Localization of CLCs in the vicinity of collagen V-expressing myofibers promoted their integration into cardiac syncytium. CLCs may facilitate hemodynamic recovery by preserving tissue elasticity in the peri-infarct borders that sustains contractile efficiency for functional recovery in an actively remodeling infarcted myocardium.  相似文献   

10.
Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with diverse cytoprotective effects, and reported to have an important role in angiogenesis recently. Here we investigated whether HO-1 transduced by mesenchymal stem cells (MSCs) can induce angiogenic effects in infarcted myocardium. HO-1 was transfected into cultured MSCs using an adenoviral vector. 1 × 106 Ad-HO-1-transfected MSCs (HO-1-MSCs) or Ad-Null-transfected MSCs (Null-MSCs) or PBS was respectively injected into rat hearts intramyocardially at 1 h post-myocardial infarction. The results showed that HO-1-MSCs were able to induce stable expression of HO-1 in vitro and in vivo. The capillary density and expression of angiogenic growth factors, VEGF and FGF2 were significantly enhanced in HO-1-MSCs-treated hearts compared with Null-MSCs-treated and PBS-treated hearts. However, the angiogenic effects of HO-1 were abolished by treating the animals with HO inhibitor, zinc protoporphyrin. The myocardial apoptosis was marked reduced with significantly reduced fibrotic area in HO-1-MSCs-treated hearts; Furthermore, the cardiac function and remodeling were also significantly improved in HO-1-MSCs-treated hearts. Our current findings support the premise that HO-1 transduced by MSCs can induce angiogenic effects and improve heart function after acute myocardial infarction.  相似文献   

11.
Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3beta may be crucial modulators for hCSC maintenance in human heart.  相似文献   

12.
Duchenne muscular dystrophy is the most prevalent inheritable muscle disease. Transplantation of autologous stem cells with gene direction is an ideal therapeutic approach for the disease. The current study aimed to investigate the restoration of myofibers in mdx mice after mdx bone marrow-derived mesenchymal stem cell (mMSC) transplantation with human microdystrophin delivery. Possible mechanisms of action were also studied. In our research, mMSCs were successfully transduced by retrovirus carrying a functional human microdystrophin gene. Transplantation of transduced mMSCs enabled persistent dystrophin restoration in the skeletal muscle of mdx mice up to the 12th week after transplantation. Simultaneous coexpression of human microdystrophin and desmin showed that implanted mMSCs are capable of long-term survival as muscle satellite cells.  相似文献   

13.
It has been reported that CXCR4‐overexpressing mesenchymal stem cells (MSCCX4) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4‐derived paracrine cardio‐protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4, and CXCR4 gene‐specific siRNA‐transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs‐conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation–regulating genes were assessed by real‐time polymerase chain reaction (RT‐PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium‐treated group than control group, while this proproliferative effect was reduced in CXCR4 gene‐specific siRNA‐transduced MSC–treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor‐β2 was observed in hypoxia‐exposed MSCCX4. In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.  相似文献   

14.
Transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is safe and may improve cardiac function and structural remodelling in patients following myocardial infarction (MI). Cardiovascular cell differentiation and paracrine effects to promote endogenous cardiac regeneration, neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility, may contribute to MSC-based cardiac repair following MI. However, current evidence indicates that the efficacy of MSC transplantation was unsatisfactory, due to the poor viability and massive death of the engrafted MSCs in the infarcted myocardium. MicroRNAs are short endogenous, conserved, non-coding RNAs and important regulators involved in numerous facets of cardiac pathophysiologic processes. There is an obvious involvement of microRNAs in almost every facet of putative repair mechanisms of MSC-based therapy in MI, such as stem cell differentiation, neovascularization, apoptosis, cardiac remodelling, cardiac contractility and arrhythmias, and others. It is proposed that therapeutic modulation of individual cardiovascular microRNA of MSCs, either mimicking or antagonizing microRNA actions, will hopefully enhance MSC therapeutic efficacy. In addition, MSCs may be manipulated to enhance functional microRNA expression or to inhibit aberrant microRNA levels in a paracrine manner. We hypothesize that microRNAs may be used as novel regulators in MSC-based therapy in MI and MSC transplantation by microRNA regulation may represent promising therapeutic strategy for MI patients in the future.  相似文献   

15.
Conventional therapies for myocardial infarction attenuate disease progression without contributing significantly to repair. Because of the capacity for de novo cardiogenesis, embryonic stem cells are considered a potential source for myocardial regeneration, yet limited information is available on their ultimate therapeutic value. We treated infarcted rat hearts with CGR8 embryonic stem cells preexamined for cardiogenicity, serially probed left ventricular function, and determined final pathological outcome. Stem cell delivery generated new cardiomyocytes of embryonic stem cell origin that integrated with host myocardium within infarct regions. This resulted in a functional benefit within 3 wk that remained sustained over 12 wk of continuous follow-up and included a vigorous inotropic response to beta-adrenergic challenge. Integration of stem cell-derived cardiomyocytes was associated with normalized ventricular architecture, little scar, and a decrease in signs of myocardial necrosis. In contrast, sham-treated infarcted hearts exhibited ventricular cavity dilation and aneurysm formation, poor ventricular function, and a lack of response to beta-adrenergic stimulation. No evidence of graft rejection, ectopy, sudden cardiac death, or tumor formation was observed after therapy. These findings indicate that embryonic stem cells, through differentiation within the host myocardium, can contribute to a stable beneficial outcome on contractile function and ventricular remodeling in the infarcted heart.  相似文献   

16.
We used human angiopoietin-1 (hAng1)-modified mesenchymal stem cells (MSCs) to treat acute myocardial infarction (AMI) in rats. The hAng1 gene was transfected into cultured rat MSCs using an adenoviral vector. Five million hAng-transfected MSCs (MSC(Ang1)) or green fluorescent protein transfected MSCs (MSC(GFP)) or PBS only (PBS group) were injected intramyocardially into the inbred Lewis rat hearts immediately after myocardial infarction. MSC(Ang1) survived in the infarcted myocardium, and expressed hAng1 at both mRNA and protein levels. The vascular density was higher in the MSC(Ang1) and MSC(GFP) groups than in the PBS group. The measurements of infarcted ventricular wall thickness, infarction area, and left ventricular diameter indicated that heart remodeling was inhibited and heart function was improved in both the MSC(Ang1) and MSC(GFP) groups. However, in contrast to the MSC(GFP) group, the MSC(Ang1) group showed enhanced angiogenesis and arteriogenesis (by 11-35%), infarction area was reduced by 30% and the left ventricular wall was 46% thicker (P<0.05). The results indicated that hAng1-modified MSCs improved heart function, followed by angiogenic effects in salvaging ischemic myocardium and reduced cardiac remodeling.  相似文献   

17.
18.
Cannabinoid receptor type 2(CB2)activation is recently reported to promote proliferation of some types of resident stem cells(e.g.,hematopoietic stem/progenitor cell or neural progenitor cell).Resident cardiac progenitor cell(CPC)activation and proliferation are crucial for endogenous cardiac regeneration and cardiac repair after myocardial infarction(MI).This study aims to explore the role and possible mechanisms of CB2receptor activation in enhancing myocardial repair.Our results revealed that CB2receptor agonist AM1241 can significantly increase CPCs by c-kit and Runx1 staining in ischemic myocardium as well as improve cardiomyocyte proliferation.AM1241 also decreased serum levels of MDA,TNF-αand IL-6 after MI.In addition,AM1241 can ameliorate left ventricular ejection fraction and fractional shortening,and reduce fibrosis.Moreover,AM1241 treatment markedly increased p-Akt and HO-1 expression,and promoted Nrf-2 nuclear translocation.However,PI3K inhibitor wortmannin eliminated these cardioprotective roles of AM1241.In conclusion,AM1241 could induce myocardial regeneration and improve cardiac function,which might be associated with PI3K/Akt/Nrf2 signaling pathway activation.Our findings may provide a promising strategy for cardiac endogenous regeneration after MI.  相似文献   

19.
Summary Both cell therapy and angiogenic growth factor gene therapy have been applied to animal studies and clinical trials. Little is known about the direct comparison between cell therapy and angiogenic growth factor gene therapy. The goal of this study was to compare the effects of human bone marrow-derived mesenchymal stem cells (hMSCs) transplantation and injection of angiogenic growth factor genes in a model of acute myocardial infarction in mice. The hMSCs were obtained from adult human bone marrow and expanded in vitro. The purity and characteristics of hMSCs were identified by flow cytometry and immunophenotyping. Immediately after ligation of the left anterior descending coronary artery in male severe combined immunodeficient (SCID) mice, culture-expanded hMSCs or angiogenic growth factor genes were injected intramuscularly at the left anterior free wall. The engrafted hMSCs were positive for cardiac marker, desmin. Infarct size was significantly smaller in the hMSCs-treated group than in the angiopoietin-1 (Ang-1) or vascular endothelial growth factor (VEGF)-treated group at day 28 after infarction. hMSCs transplantation was better in decreasing left ventricular end-diastolic dimension and increasing fractional shortening than Ang1 or VEGF gene therapy. Capillary density was markedly increased after hMSCs transplantation than Ang1 and VEGF gene therapy. In conclusion, intramyocardial transplantation of hMSCs improves cardiac function after acute myocardial infarction through enhancement of angiogenesis and myogenesis in the ischemic myocardium. hMSCs are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. Transplantation of MSCs may become the future therapy for acute myocardial infarction for myocardial regeneration.  相似文献   

20.
microRNAs (miRs) have emerged as critical modulators of various physiological processes including stem cell differentiation. Indeed, miR-1 has been reported to play an integral role in the regulation of cardiac muscle progenitor cell differentiation. However, whether overexpression of miR-1 in embryonic stem (ES) cells (miR-1-ES cells) will enhance cardiac myocyte differentiation following transplantation into the infarcted myocardium is unknown. In the present study, myocardial infarction (MI) was produced in C57BL/6 mice by left anterior descending artery ligation. miR-1-ES cells, ES cells, or culture medium (control) was transplanted into the border zone of the infarcted heart, and 2 wk post-MI, cardiac myocyte differentiation, adverse ventricular remodeling, and cardiac function were assessed. We provide evidence demonstrating enhanced cardiac myocyte commitment of transplanted miR-1-ES cells in the mouse infarcted heart as compared with ES cells. Assessment of apoptosis revealed that overexpression of miR-1 in transplanted ES cells protected host myocardium from MI-induced apoptosis through activation of p-AKT and inhibition of caspase-3, phosphatase and tensin homolog, and superoxide production. A significant reduction in interstitial and vascular fibrosis was quantified in miR-1-ES cell and ES cell transplanted groups compared with control MI. However, no statistical significance between miR-1-ES cell and ES cell groups was observed. Finally, mice receiving miR-1-ES cell transplantation post-MI had significantly improved heart function compared with respective controls (P < 0.05). Our data suggest miR-1 drives cardiac myocyte differentiation from transplanted ES cells and inhibits apoptosis post-MI, ultimately giving rise to enhanced cardiac repair, regeneration, and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号