首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of the wild-type XIAP BIR3 domain as well as its Trp323Ser variant in inhibition of human caspase-9, binding to AVPFVASLPN (SMAC-peptide), SMAC protein, and mature caspase-9 was investigated. In order to investigate the role of W323 on these interactions, this residue was mutated to Serine. Circular dichroism as well as thermal denaturation studies showed that W323S mutation did not hamper proper folding of the protein. The dissociation constants for the interaction of the wild type BIR3 as well as its mutant to Smac-type peptide were found to be 1.8 and 27 muM, respectively. The inhibition of and binding to caspase-9 by wild-type BIR3 and its mutant were also compared. While the wild-type protein potently inhibited the enzyme, the mutant failed to do so. The lack of caspase-9 inhibition was due to absence of interaction of the mutant BIR3 with mature caspase-9. These results indicate that Trp323 of BIR3 plays a pivotal role both in maintaining necessary conformation for caspase-9 interaction and to a lesser extent, recognition of Smac-type peptide. Moreover, decreased stability of the mutant compared with the wild type indicates that W323 is essential for maintaining the stability BIR3-Smac-peptide complex.  相似文献   

2.
Exposure of cells to hyperthermia is known to induce apoptosis, although the underlying mechanisms are only partially understood. Here, we examine the molecular requirements necessary for heat-induced apoptosis using genetically modified Jurkat T-lymphocytes. Cells stably overexpressing Bcl-2/Bcl-x(L) or stably depleted of Apaf-1 were completely resistant to heat-induced apoptosis, implicating the involvement of the mitochondria-mediated pathway. Pretreatment of wild-type cells with the cell-permeable biotinylated general caspase inhibitor b-VAD-fmk (biotin-Val-Ala-Asp(OMe)-CH(2)F) both inhibited heat-induced apoptosis and affinity-labeled activated initiator caspase-2, -8, and -9. Despite this finding, however, cells engineered to be deficient in caspase-8, caspase-2, or the caspase-2 adaptor protein RAIDD (receptor-interacting protein (RIP)-associated Ich-1/CED homologous protein with death domain) remained susceptible to heat-induced apoptosis. Additionally, b-VAD-fmk failed to label any activated initiator caspase in Apaf-1-deficient cells exposed to hyperthermia. Cells lacking Apaf-1 or the pro-apoptotic BH3-only protein Bid exhibited lower levels of heat-induced Bak activation, cytochrome c release, and loss of mitochondrial membrane potential, although cleavage of Bid to truncated Bid (tBid) occurred downstream of caspase-9 activation. Combined, the data suggest that caspase-9 is the critical initiator caspase activated during heat-induced apoptosis and that tBid may function to promote cytochrome c release during this process as part of a feed-forward amplification loop.  相似文献   

3.
Smac/DIABLO, HtrA2/Omi, and caspase-9 play key roles in the initiation of apoptosis. The inhibitor of apoptosis proteins (IAPs) are believed to bind to the N-terminal IAP binding motifs of the mature (proteolytically processed) forms of Smac, HtrA2, and caspase-9. However, we show here that BRUCE/Apollon, a 528-kDa IAP whose degradation promotes apoptosis, associates with their precursors as well as the mature forms by binding to regions in addition to the IAP binding motif. Through these associations, BRUCE promotes the degradation of Smac and inhibits the activity of caspase-9 but not the effector caspase, caspase-3. In response to apoptotic stimuli, BRUCE is degraded by proteasomes and/or cleaved by caspases and HtrA2 depending on the specific stimulus and the cell type. These results suggest that the ability of BRUCE to antagonize both the precursor and mature forms of Smac and caspase-9 is an important mechanism for the prevention of apoptosis under normal conditions.  相似文献   

4.
Caspase-9 plays an important role in apoptosis induced by genotoxic stress. Irradiation and anticancer drugs trigger mitochondrial outer membrane permeabilization, resulting in cytochrome c release and caspase-9 activation. Two highly contentious issues, however, remain: It is unclear whether the loss of the mitochondrial membrane potential DeltaPsi(M) contributes to cytochrome c release and whether caspases are involved. Moreover, an unresolved question is whether caspase-2 functions as an initiator in genotoxic stress-induced apoptosis. In the present study, we have identified a mutant Jurkat T-cell line that is deficient in caspase-9 and resistant to apoptosis. Anticancer drugs, however, could activate proapoptotic Bcl-2 proteins and cytochrome c release, similarly as in caspase-9-proficient cells. Interestingly, despite these alterations, the cells retained DeltaPsi(M). Furthermore, processing and enzyme activity of caspase-2 were not observed in the absence of caspase-9. Reconstitution of caspase-9 expression restored not only apoptosis but also the loss of DeltaPsi(M) and caspase-2 activity. Thus, we provide genetic evidence that caspase-9 is indispensable for drug-induced apoptosis in cancer cells. Moreover, loss of DeltaPsi(M) can be functionally separated from cytochrome c release. Caspase-9 is not only required for DeltaPsi(M) loss but also for caspase-2 activation, suggesting that these two events are downstream of the apoptosome.  相似文献   

5.
For successful mitotic entry and spindle assembly, mitosis-promoting factors are activated at the G(2)/M transition stage, followed by stimulation of the anaphase-promoting complex (APC), an E3 ubiquitin ligase, to direct the ordered destruction of several critical mitotic regulators. Given that inhibition of APC activity is important for preventing premature or improper ubiquitination and destruction of substrates, several modulators and their regulation mechanisms have been studied. Emi1, an early mitotic inhibitor, is one of these regulatory factors. Here we show, by analyzing Emi1-deficient embryos, that Emi1 is essential for precise mitotic progression during early embryogenesis. Emi1(-/-) embryos were found to be lethal due to a defect in preimplantation development. Cell proliferation appeared to be normal, but mitotic progression was severely defective during embryonic cleavage. Moreover, multipolar spindles and misaligned chromosomes were frequently observed in Emi1 mutant cells, possibly due to premature APC activation. Our results collectively suggest that the late prophase checkpoint function of Emi1 is essential for accurate mitotic progression and embryonic viability.  相似文献   

6.
Survival of bloodstream form Trypanosoma brucei, the agent of African sleeping sickness, normally requires mitochondrial gene expression, despite the absence of oxidative phosphorylation in this stage of the parasite's life cycle. Here we report that silencing expression of the alpha subunit of the mitochondrial F(1)-ATP synthase complex is lethal for bloodstream stage T. brucei as well as for T. evansi, a closely related species that lacks mitochondrial protein coding genes (i.e. is dyskinetoplastic). Our results suggest that the lethal effect is due to collapse of the mitochondrial membrane potential, which is required for mitochondrial function and biogenesis. We also identified a mutation in the gamma subunit of F(1) that is likely to be involved in circumventing the requirement for mitochondrial gene expression in another dyskinetoplastic form. Our data reveal that the mitochondrial ATP synthase complex functions in the bloodstream stage opposite to that in the insect stage and in most other eukaryotes, namely using ATP hydrolysis to generate the mitochondrial membrane potential.  相似文献   

7.
The current consensus in the literature is that ovulated oocytes that are not fertilized die by apoptosis, but the details of the proteins involved in the apoptotic pathways have not been elucidated. In this paper we confirm that caspase-3, the executioner of apoptosis, is expressed in mouse oocytes, and show that two initiators of apoptosis, caspase-8 and caspase-9, are expressed in mouse oocytes. Comparisons were made of caspase-3, -8, and -9 activities in superovulated oocytes that were freshly collected or allowed to age in vivo or in vitro. We found that caspase-3 activity significantly increased in aged oocytes compared with young oocytes (p < 0.001), and that both caspase-8 activity and caspase-9 activity decreased in aged oocytes compared with young oocytes (p < 0.001 for caspase-8 and p < 0.05 for caspase-9 activity). A comparison of superovulated with naturally ovulated oocytes showed the same amount of caspase-8 activity in each, but a significant (p < 0.001) decrease in caspase-9 activity in naturally ovulated compared with superovulated oocytes. There was no difference in caspase-3, -8, or -9 activity in oocytes compared with zygotes. Finally, we showed that culture of oocytes in staurosporine increased the activity of caspase-8 and caspase-9. In conclusion, the finding of both caspase-8 and caspase-9 activity in oocytes shows that unfertilized oocytes have the machinery to undergo apoptosis by using either the extrinsic (caspase-8 dependent) or intrinsic (caspase-9 dependent) pathways.  相似文献   

8.
BACKGROUND: Drosophila embryogenesis is initiated by 13 rapid syncytial mitotic divisions that do not require zygotic gene activity. This maternally directed cleavage phase of development terminates at the midblastula transition (MBT), at which point the cell cycle slows dramatically, membranes surround the cortical nuclei to form a cellular blastoderm, and zygotic gene expression is first required. RESULTS: We show that embryos lacking Mei-41, a Drosophila homologue of the ATM tumor suppressor, proceed through unusually short syncytial mitoses, fail to terminate syncytial division following mitosis 13, and degenerate without forming cells. A similar cleavage-stage arrest is produced by mutations in grapes, which encodes a homologue of the Checkpoint-1 kinase. We present biochemical, cytological and genetic data indicating that Mei-41 and Grapes are components of a conserved DNA-replication/damage checkpoint pathway that triggers inhibitory phosphorylation of the Cdc2 kinase and mediates resistance to replication inhibitors and DNA-damaging agents. This pathway is nonessential during postembryonic development, but it is required to terminate the cleavage stage at the MBT. Cyclins are required for Cdc2 kinase activity, and mutations in cyclin A and cyclin B bypass the requirement for mei-41 at the MBT. These mutations do not restore wild-type syncytial cell-cycle timing or the embryonic replication checkpoint, however, suggesting that Mei-41-mediated inhibition of Cdc2 has an additional essential function at the MBT. CONCLUSIONS: The Drosophila DNA-replication/damage checkpoint pathway can be activated by externally triggered DNA damage or replication defects throughout the life cycle, and under laboratory conditions this inducible function is nonessential. During early embryogenesis, however, this pathway is activated by developmental cues and is required for the transition from maternal to zygotic control of development at the MBT.  相似文献   

9.
Class I(A) phosphoinositide 3-kinases (PI3Ks) are heterodimeric enzymes composed of a p85 regulatory and a p110 catalytic subunit that induce the formation of 3-polyphosphoinositides, which mediate cell survival, division, and migration. There are two ubiquitous PI3K isoforms p110α and p110β that have nonredundant functions in embryonic development and cell division. However, whereas p110α concentrates in the cytoplasm, p110β localizes to the nucleus and modulates nuclear processes such as DNA replication and repair. At present, the structural features that determine p110β nuclear localization remain unknown. We describe here that association with the p85β regulatory subunit controls p110β nuclear localization. We identified a nuclear localization signal (NLS) in p110β C2 domain that mediates its nuclear entry, as well as a nuclear export sequence (NES) in p85β. Deletion of p110β induced apoptosis, and complementation with the cytoplasmic C2-NLS p110β mutant was unable to restore cell survival. These studies show that p110β NLS and p85β NES regulate p85β/p110β nuclear localization, supporting the idea that nuclear, but not cytoplasmic, p110β controls cell survival.  相似文献   

10.
Veal heart ribonuclease P has an essential RNA component   总被引:14,自引:0,他引:14  
The activity of RNase P (EC 3.1.26.5) from veal heart can be abolished by pretreatment of the enzyme preparation with micrococcal nuclease, pancreatic RNase A, or RNase T1. This indicates that veal heart RNase P contains an RNA component essential for function of the enzyme as has also been shown for E. coli RNase P (1–3). Additionally, veal heart RNase P has a buoyant density in Cs2SO4 of 1.33 g/cm3, which is intermediate between that of protein and nucleic acid.  相似文献   

11.
Centrins are calmodulin-like proteins present in microtubule-organizing centers. The Saccharomyces cerevisiae centrin, Cdc31p, was functionally tagged with a single Z domain of protein A, and used in pull-down experiments to isolate Cdc31p-binding proteins. One of these, Sfi1p, localizes to the half-bridge of the spindle pole body (SPB), where Cdc31p is also localized. Temperature-sensitive mutants in SFI1 show a defect in SPB duplication and genetic interactions with cdc31-1. Sfi1p contains multiple internal repeats that are also present in a Schizosaccharomyces pombe protein, which also localizes to the SPB, and in several human proteins, one of which localizes close to the centriole region. Cdc31p binds directly to individual Sfi1 repeats in a 1:1 ratio, so a single molecule of Sfi1p binds multiple molecules of Cdc31p. The centrosomal human protein containing Sfi1 repeats also binds centrin in the repeat region, showing that this centrin-binding motif is conserved.  相似文献   

12.
Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB.   总被引:24,自引:0,他引:24  
Ced-4 and Apaf-1 belong to a major class of apoptosis regulators that contain caspase-recruitment (CARD) and nucleotide-binding oligomerization domains. Nod1, a protein with an NH2-terminal CARD-linked to a nucleotide-binding domain and a COOH-terminal segment with multiple leucine-rich repeats, was identified. Nod-1 was found to bind to multiple caspases with long prodomains, but specifically activated caspase-9 and promoted caspase-9-induced apoptosis. As reported for Apaf-1, Nod1 required both the CARD and P-loop for function. Unlike Apaf-1, Nod1 induced activation of nuclear factor-kappa-B (NF-kappaB) and bound RICK, a CARD-containing kinase that also induces NF-kappaB activation. Nod1 mutants inhibited NF-kappaB activity induced by RICK, but not that resulting from tumor necrosis factor-alpha stimulation. Thus, Nod1 is a leucine-rich repeat-containing Apaf-1-like molecule that can regulate both apoptosis and NF-kappaB activation pathways.  相似文献   

13.
Development of new therapies for glioblastoma requires animal models that mimic the biological characteristics of human brain tumors. On the other hand, potential antitumoral effects of a new therapeutic strategy are often established by evaluation of tumor cells apoptosis. Caspases are key mediators in the regulation and execution of apoptosis. Caspase-9 is activated during the intrinsic pathway downstream of mitochondria while caspase-3 is an effector caspase that initiates degradation of the cell in the final stages of apoptosis. Bax is a pro-apoptotic member of the Bcl-2 family that play key roles in the regulation of intrinsic apoptotic signaling. In the present study we investigated the immunohistochemical distribution of caspase 3, 9 and Bax in intracranial U87 glioblastoma xenograft. Immunohistochemistry showed that the glioblastoma xenografts contain cells positive for caspase-3, caspase-9, and Bax.  相似文献   

14.
Excess ER stress induces caspase-12 activation and/or cytochrome c release, causing caspase-9 activation. Little is known about their relationship during ER stress-mediated cell death. Upon ER stress, P19 embryonal carcinoma (EC) cells showed activation of various caspases, including caspase-3, caspase-8, caspase-9, and caspase-12, and extensive DNA fragmentation. We examined the relationship between ER stress-mediated cytochrome c/caspase-9 and caspase-12 activation by using caspase-9- and caspase-8-deficient mouse embryonic fibroblasts and a P19 EC cell clone [P19-36/12 (-) cells] lacking expression of caspase-12. Caspase-9 and caspase-8 deficiency inhibited and delayed the onset of DNA fragmentation but did not inhibit caspase-12 processing induced by ER stress. P19-36/12 (-) cells underwent apoptosis upon ER stress, with cytochrome c release and caspase-8 and caspase-9 activation. The dominant negative form of FADD and z-VAD-fmk inhibited caspase-8, caspase-9, Bid processing, cytochrome c release, and DNA fragmentation induced by ER stress, suggesting that caspase-8 and caspase-9 are the main caspases involved in ER stress-mediated apoptosis of P19-36/12 (-) cells. Caspase-8 deficiency also inhibited the cytochrome c release induced by ER stress. Thus, in parallel with the caspase-12 activation, ER stress triggers caspase-8 activation, resulting in cytochrome c/caspase-9 activation via Bid processing.  相似文献   

15.
Magmas is a growth factor responsive gene encoding an essential mitochondrial protein in mammalian cells. Pam16, the Magmas ortholog in Saccharomyces cerevisiae, is a component of the presequence translocase-associated motor. A temperature-sensitive allele (pam16-I61N) was used to query an array of non-essential gene-deletion strains for synthetic genetic interactions. The pam16-I61N mutation at ambient temperature caused synthetic lethal or sick phenotypes with genes involved in lipid metabolism, perixosome synthesis, histone deacetylation and mitochondrial protein import. The gene deletion array was also screened for suppressors of the pam16-I61N growth defect to identify compensatory pathways. Five suppressor genes were identified (SUR4, ISC1, IPT1, SKN1, and FEN1) and all are involved in sphingolipid metabolism. pam16-I61N cells cultured in glucose at non-permissive temperatures resulted in rapid growth inhibition and G1 cell cycle arrest, but cell viability was maintained. Altered mitochondria morphology, reduced peroxisome induction in glycerol/ethanol and oleate, and changes in the levels of several sphingolipids including C18 alpha-hydroxy-phytoceramide, were also observed in the temperature sensitive strain. Deletion of SUR4, the strongest suppressor, reversed the temperature sensitive fermentative growth defect, the morphological changes and the elevated levels of C18 alpha-hydroxy phytoceramide in pam16-I61N. Deletion of the other four suppressor genes had similar effects on C18 alpha-hydroxy-phytoceramide levels and restored proliferation to the pam16-I61N strain. In addition, pam16-I61N inhibited respiratory growth, likely by reducing cardiolipin, which is essential for mitochondrial function. Our results suggest that the pleiotropic effects caused by impaired Pam16/Magmas function are mediated in part by changes in lipid metabolism.  相似文献   

16.
Osteoclasts are essential for bone dynamics and calcium homeostasis. The cells form a tight seal on the bone surface, onto which they secrete acid and proteases to resorb bone. The seal is associated with a ring of actin filaments. Cortactin, a c-Src substrate known to promote Arp2/3-mediated actin assembly in vitro, is expressed in osteoclasts and localizes to the sealing ring. To address the role of cortactin and actin assembly in osteoclasts, we depleted cortactin by RNA interference. Cortactin-depleted osteoclasts displayed a complete loss of bone resorption with no formation of sealing zones. On nonosteoid surfaces, osteoclasts flatten with a dynamic, actin-rich peripheral edge that contains podosomes, filopodia, and lamellipodia. Cortactin depletion led to a specific loss of podosomes, revealing a tight spatial compartmentalization of actin assembly. Podosome formation was restored in cortactin-depleted cells by expression of wild-type cortactin or a Src homology 3 point mutant of cortactin. In contrast, expression of a cortactin mutant lacking tyrosine residues phosphorylated by Src did not restore podosome formation. Cortactin was found to be an early component of the nascent podosome belt, along with dynamin, supporting a role for cortactin in actin assembly.  相似文献   

17.
Annexin 2 is a Ca(2+) binding protein that binds to and aggregates secretory vesicles at physiological Ca(2+) levels [1] and that also associates Ca(2+) independently with early endosomes [2, 3]. These properties suggest roles in both exocytosis and endocytosis, but little is known of the dynamics of Annexin 2 distribution in live cells during these processes. We have used evanescent field microscopy to image Annexin 2-GFP in live, secreting rat basophilic leukemia cells and in cells performing pinocytosis. Although we found no evidence of Annexin 2 involvement in exocytosis, we observed an enrichment of Annexin 2-GFP in actin tails propeling macropinosomes. The association of Annexin 2-GFP with rocketing macropinosomes was specific because Annexin 2-GFP was absent from the actin tails of rocketing Listeria. This finding suggests that the association of Annexin 2 with macropinocytic rockets requires native pinosomal membrane. Annexin 2 is necessary for the formation of macropinocytic rockets since overexpression of a dominant-negative Annexin 2 construct abolished the formation of these structures. The same construct did not prevent the movement of Listeria in infected cells. These results show that recruitment of Annexin 2 to nascent macropinosome membranes 16656is an essential prerequisite for actin polymerization-dependent vesicle locomotion.  相似文献   

18.
Paclitaxel (also known as Taxol) is a well-known anticancer agent that blocks cell mitosis and kills tumor cells, and is often used in clinic to treat cancers. Despite the success of Paclitaxel, the development of drug resistance prevents its clinical applicability. Here, we screened an siRNA library against the entire human genomes using HeLa cells, and have find that lack of USP15 (ubiquitin-specific protease 15) causes Paclitaxel resistance. We also observed the decreased expression of USP15 in Paclitaxel-resistant human ovarian cancer samples. In addition, we have demonstrated that USP15 plays an essential role for stability and activity of caspase-3 during Paclitaxel-induced apoptosis. Thus, USP15 may be a candidate diagnostic marker and therapeutic target for Paclitaxel-resistant cancers.  相似文献   

19.
Apoptosis is a programmed cell death that has been demonstrated in human and animal studies and plays an essential role to remove injured cells after acute strenuous exercise. Protein p53 plays important roles in regulating apoptosis via mitochondrial pathway. Therefore, the aims of this study were to determine the effects of acute resistance exercise (RE) on serum p53, caspase-9, and caspase-3, markers of apoptosis, and whether resistance training status influences the magnitude of the RE-induced apoptosis. Nine resistance-trained (RT) (age, 22.37 ± 1.99 years; height, 174 ± 5.04 cm; body weight, 71.32 ± 5.57 kg; and body mass index [BMI] 23.58 ± 2.05 kg·m(-2)) and 9 untrained (UT) college-age men (age, 22.25 ± 2.13 years; height, 171 ± 3.4 cm; body weight, 68.45 ± 3.23 kg; and BMI, 23.41 ± 1.08 kg·m(-2)) volunteered to participate in this study. Resistance-trained and UT men completed an RE bout consisting of 4 sets of 6 exercise at 80% of 1 repetition maximum until failure. Serum levels of p53, caspase-9, and caspase-3 were examined at preexercise (pre), immediately post (IP), 3 hours post (3 hours post), and 24 hours post RE (24 hours post). In UT, serum levels of p53, caspase-9, and caspase-3 were significantly increased at IP compared with RT. However, plasma insulin-like growth factor 1 level was higher for RT compared with UT at IP. Collectively, our data suggest the role of p53 in regulating apoptosis through mitochondrial pathway as measured by caspase-9 and caspase-3 after acute RE in UT. Our results also revealed that regular RT alters apoptosis biomarkers, especially the intrinsic pathway of apoptosis.  相似文献   

20.
Guo Yu Zhang  Jing Feng  Jian Wu  Xiao Wu Wang 《Planta》2010,231(6):1323-1334
Pectin methylesterase (PME) is known to have important roles in pollen development and pollen tube growth. As pivotal regulatory factors in PME activity modulation, PME inhibitors (PMEIs) are thought to be key regulators of cell wall stability at the tip of the pollen tube. We report on the cloning and characterization of a novel B. oleracea PMEI gene, BoPMEI1. Heterologously expressed BoPMEI1 showed PMEI activity. RT-PCR studies of different tissues and promoter-GUS fusions confirmed that BoPMEI1 was specifically expressed in mature pollen grains and pollen tubes. Based on in vivo transient assays, we found that BoPMEI1 appears to be largely localized to the plasma membrane. Transgenic Arabidopsis plants expressing antisense BoPMEI1 under the control of the CaMV 35S promoter suppressed the expression of the orthologous gene At1g10770, which led to partial male sterility and decreased seed set by inhibition of pollen tube growth. Our study demonstrates the involvement of BoPMEI1 in pollen tube growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号