首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complements, such as C1q and C3, and macrophages in the splenic marginal zone (MZMs) play pivotal roles in the efficient uptake and processing of circulating apoptotic cells. SIGN-R1, a C-type lectin that is highly expressed in a subpopulation of MZMs, regulates the complement fixation pathway by interacting with C1q, to fight blood-borne Streptococcus pneumoniae. Therefore, we examined whether the SIGN-R1-mediated classical complement pathway plays a role in apoptotic cell clearance and immune tolerance. SIGN-R1 first-bound apoptotic cells and this binding was significantly enhanced in the presence of C1q. SIGN-R1–C1q complex then immediately mediated C3 deposition on circulating apoptotic cells in the MZ, leading to the efficient clearance of them. SIGN-R1-mediated C3 deposition was completely abolished in the spleen of SIGN-R1 knockout (KO) mice. Given that SIGN-R1 is not expressed in the liver, we were struck by the finding that C3-deposited apoptotic cells were still found in the liver of wild-type mice, and dramatically reduced in the SIGN-R1 KO liver. In particular, SIGN-R1 deficiency caused delayed clearance of apoptotic cells and aberrant secretion of cytokines, such as TNF-α, IL-6, and TGF-β in the spleen as well as in the liver. In addition, anti-double- and single-stranded DNA antibody level was significantly increased in SIGN-R1-depleted mice compared with control mice. These findings suggest a novel mechanism of apoptotic cell clearance which is initiated by SIGN-R1 in the MZ and identify an integrated role of SIGN-R1 in the systemic clearance of apoptotic cells, linking the recognition of apoptotic cells, the opsonization of complements, and the induction of immune tolerance.  相似文献   

2.
Mannose-binding lectin (MBL) is a serum protein of the innate immune system. After binding to a microorganism, MBL in complex with MBL-associated serine proteases activates the complement system, resulting in cleavage of complement factor C3. Cleaved C3 on the surface of the microorganism mediates opsonization for clearance, but the impact of MBL on subsequent phagocytosis has not been widely studied. We investigated the role of MBL in complement activation and phagocytosis of various bacteria and yeast species by flow cytometry. We measured both the C3 deposition during serum opsonization of fluorescent-labeled microorganisms as well as subsequent uptake of these microorganisms by human neutrophils. In MBL-deficient sera, a consistently decreased C3 deposition on both zymosan and Candida albicans was found and a reduced phagocytosis by neutrophils that was restored by exogenous MBL. This indicates that the lectin pathway of complement activation is important for the opsonophagocytosis of yeasts. In contrast, the C1q-dependent classical pathway dominated in the opsonization and phagocytosis of Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia coli, whereas no effect of MBL was found. Both the lectin and the classical pathway of complement activation were highly amplified by the alternative route for opsonophagocytosis by neutrophils of yeast as well as microbial species. In summary, our data demonstrate that yeast species are preferentially opsonized and subsequently phagocytosed via activation of the lectin pathway of complement, whereas the uptake of bacterial strains was found to be largely MBL independent.  相似文献   

3.
Although the initiating complex of lectin pathway (called M1 in this study) generates C3/C5 convertases similar to those assembled by the initiating complex (C1) of the classical pathway, activation of complement component C5 via the lectin pathway has not been examined. In the present study kinetic analysis of lectin pathway C3/C5 convertases assembled on two surfaces (zymosan and sheep erythrocytes coated with mannan (E(Man))) revealed that the convertases (ZymM1,C4b,C2a and E(Man)M1,C4b,C2a) exhibited a similar but weak affinity for the substrate, C5 indicated by a high K(m) (2.73-6.88 microm). Very high affinity C5 convertases were generated when the low affinity C3/C5 convertases were allowed to deposit C3b by cleaving native C3. These C3b-containing convertases exhibited K(m) (0.0086-0.0075 microm) well below the normal concentration of C5 in blood (0.37 microm). Although kinetic parameters, K(m) and k(cat), of the lectin pathway C3/C5 convertases were similar to those reported for classical pathway C3/C5 convertases, studies on the ability of C4b to bind C2 indicated that every C4b deposited on zymosan or E(Man) was capable of forming a convertase. These findings differ from those reported for the classical pathway C3/C5 convertase, where only one of four C4b molecules deposited formed a convertase. The potential for four times more amplification via the lectin pathway than the classical pathway in the generation of C3/C5 convertases and production of pro-inflammatory products, such as C3a, C4a, and C5a, implies that activation of complement via the lectin pathway might be a more prominent contributor to the pathology of inflammatory reactions.  相似文献   

4.
Cells that undergo apoptosis or necrosis are promptly removed by phagocytes. Soluble opsonins such as complement can opsonize dying cells, thereby promoting their removal by phagocytes and modulating the immune response. The pivotal role of the complement system in the handling of dying cells has been demonstrated for the classical pathway (via C1q) and lectin pathway (via mannose-binding lectin and ficolin). Herein we report that the only known naturally occurring positive regulator of complement, properdin, binds predominantly to late apoptotic and necrotic cells, but not to early apoptotic cells. This binding occurs independently of C3b, which is additional to the standard model wherein properdin binds to preexisting clusters of C3b on targets and stabilizes the convertase C3bBb. By binding to late apoptotic or necrotic cells, properdin serves as a focal point for local amplification of alternative pathway complement activation. Furthermore, properdin exhibits a strong interaction with DNA that is exposed on the late stage of dying cells. Our data indicate that direct recognition of dying cells by properdin is essential to drive alternative pathway complement activation.  相似文献   

5.
Serotype III group B streptococci (GBS) are a common cause of neonatal sepsis and meningitis. Although deficiency in maternal capsular polysaccharide (CPS)-specific IgG correlates with susceptibility of neonates to the GBS infection, serum deficient in CPS-specific IgG mediates significant opsonophagocytosis. This IgG-independent opsonophagocytosis requires activation of the complement pathway, a process requiring the presence of both Ca(2+) and Mg(2+), and is significantly reduced by chelating Ca(2+) with EGTA. In these studies, we defined a role of L-ficolin/mannose-binding lectin-associated serine protease (MASP) complexes in Ca(2+)-dependent, Ab-independent opsonophagocytosis of serotype III GBS. Incubation of GBS with affinity-purified L-ficolin/MASP complexes and C1q-depleted serum deficient in CPS-specific Ab supported opsonophagocytic killing, and this killing was inhibited by fluid-phase N-acetylglucosamine, the ligand for L-ficolin. Binding of L-ficolin was proportional to the CPS content of individual strains, and opsonophagocytic killing and C4 activation were inhibited by fluid-phase CPS, suggesting that L-ficolin binds to CPS. Sialic acid is known to inhibit alternative complement pathway activation, and, as expected, the bactericidal index (percentage of bacteria killed) for individual strains was inversely proportional to the sialic acid content of the CPS, and L-ficolin-initiated opsonophagocytic killing was significantly increased by addition of CPS-specific IgG2, which increased activation of the alternative pathway. We conclude that binding of L-ficolin/MASP complexes to the CPS generates C3 convertase C4b2a, which deposits C3b on GBS. C3b deposited by this lectin pathway forms alternative pathway C3 convertase C3bBb whose activity is enhanced by CPS-specific IgG2, leading to increased opsonophagocytic killing by further deposition of C3b on the GBS.  相似文献   

6.
Ixodes scapularis salivary protein 20 (Salp20) is a member of the Ixodes scapularis anti-complement protein-like family of tick salivary proteins that inhibit the alternative complement pathway. In this study, we demonstrate that the target of Salp20 is properdin. Properdin is a natural, positive regulator of the alternative pathway that binds to the C3 convertase, stabilizing the molecule. Salp20 directly bound to and displaced properdin from the C3 convertase. Displacement of properdin accelerated the decay of the C3 convertase, leading to inhibition of the alternative pathway. S20NS is distinct from known decay accelerating factors, such as decay accelerating factor, complement receptor 1, and factor H, which directly interact with either C3b or cleaved factor B.  相似文献   

7.
The opsonic requirements for phagocytosis of S. pneumoniae types 6, 7, 18, and 23 were determined in normal and C2 deficient serum, and in normal serum chelated with magnesium ethyleneglycoltetraacetic acid. All four strains were effectively opsonized via the alternative complement pathway, a finding suggesting that the capsular polysaccharides of these strains activated complement via the alternative pathway. Since bacteremic pneumococcal disease is often associated with circulating capsular polysaccharide, it was considered that this cellular component may activate complement in vivo and impair host defenses by producing an opsonic defect for pneumococci. To examine this hypothesis, serum was incubated with suspensions of whole S. pneumoniae types 6, 7, 18, or 23 or with purified capsular polysaccharide from each of these types, and residual complement activity and opsonic capacity were measured. Hemolytic C 3--9 complement activity and opsonic capacity for 3H-thymidine labeled Salmonella typhimurium, a species effectively opsonized via the alternative pathway, were reduced in serum following incubation. Polysaccharide concentrations as low as 1 microgram/ml inhibited serum opsonic capacity for salmonella. Whole pneumococci and pneumococcal capsular polysaccharide also inhibited the opsonic activity of human C2 deficient serum for salmonella, further evidence for activation of complement via the alternative pathway. Pneumococcal capsular polysaccharide markedly inhibited the opsonic capacity of normal serum for the homologous pneumoccal type. Thus, amounts of pneumococcal capsular polysaccharide, similar to those found in the serum of patients with pneumococcal disease, bring about decomplementation of serum via activation of the alternative pathway and inhibit pneumococcal opsonization.  相似文献   

8.
The complement system plays a key role in host defense against pneumococcal infection. Three different pathways, the classical, alternative and lectin pathways, mediate complement activation. While there is limited information available on the roles of the classical and the alternative activation pathways of complement in fighting streptococcal infection, little is known about the role of the lectin pathway, mainly due to the lack of appropriate experimental models of lectin pathway deficiency. We have recently established a mouse strain deficient of the lectin pathway effector enzyme mannan-binding lectin associated serine protease-2 (MASP-2) and shown that this mouse strain is unable to form the lectin pathway specific C3 and C5 convertases. Here we report that MASP-2 deficient mice (which can still activate complement via the classical pathway and the alternative pathway) are highly susceptible to pneumococcal infection and fail to opsonize Streptococcus pneumoniae in the none-immune host. This defect in complement opsonisation severely compromises pathogen clearance in the lectin pathway deficient host. Using sera from mice and humans with defined complement deficiencies, we demonstrate that mouse ficolin A, human L-ficolin, and collectin 11 in both species, but not mannan-binding lectin (MBL), are the pattern recognition molecules that drive lectin pathway activation on the surface of S. pneumoniae. We further show that pneumococcal opsonisation via the lectin pathway can proceed in the absence of C4. This study corroborates the essential function of MASP-2 in the lectin pathway and highlights the importance of MBL-independent lectin pathway activation in the host defense against pneumococci.  相似文献   

9.
The complement system plays an important role in innate immunity. In the lectin complement pathway, mannose-binding lectin (MBL) and ficolins act as recognition molecules, and MBL-associated serine protease (MASP) is a key enzyme. It has been suggested that MASP-2 is responsible for the activation of C4. Other serine proteases (MASP-1 and MASP-3) are also associated with MBL or ficolins; however, their functions are still controversial. In this study, a MASP-1- and MASP-3-deficient mouse model (MASP1/3(-/-)) was generated by a gene targeting strategy to investigate the roles of MASP-1 and MASP-3 in the lectin pathway. Serum derived from MASP1/3(-/-) mice showed significantly lower activity of both C4 and C3 deposition on mannan-agarose, and this low activity was restored by the addition of recombinant MASP-1. MASP-1/3-deficient serum showed a significant delay for activation of MASP-2 compared with normal serum. Reconstitution of recombinant MASP-1 in MASP-1/3-deficient serum was able to promote the activation of MASP-2. From these results, we propose that MASP-1 contributes to the activation of the lectin pathway, probably through the activation of MASP-2.  相似文献   

10.
C3 and C5 convertases are central stages of the complement cascade since they converge the different initiation pathways, augment complement activation by an amplification loop and lead to a common terminal pathway resulting in the formation of the membrane attack complex. Several complement inhibitors attenuate convertase formation and/or accelerate dissociation of convertase complexes. Functional assays used to study these processes are often performed using purified complement components, from which enzymatic complexes are reconstituted on the surface of erythrocytes or artificial matrices. This strategy enables identification of individual interactions between convertase components and putative regulators but carries an inherent risk of detecting non-physiological interactions that would not occur in a milieu of whole serum. Here we describe a novel, alternative method based on C3 or C5-depleted sera, which support activation of the complement cascade up to the desired stages of convertases. This approach allows fast and simple assessment of the influence of putative regulators on convertase formation and stability. As an example of practical utility of the assay, we performed studies on thioredoxin-1 in order to clarify the mechanism of its influence on complement convertases.  相似文献   

11.
Hagfish, agnathan cyclostome, is the most primitive extant vertebrate and its complement (C) system seems to be a primordial system in comparison with a well-developed C system in gnathostome vertebrates. From a phylogenic perspective of defense mechanisms, we have isolated complement C3 from the serum of hagfish (Eptatretus burgeri). In this study, we first attempted to identify a hagfish Bf or C2 as a C3 convertase by RT-PCR using degenerative primers designed on the basis of the conserved amino acid stretches among the several kinds of serine proteases. Contrary to our expectation, homology search of cloned RT-PCR product suggested that there was a partial cDNA encoding the homologue of neither Bf nor C2 but a mannose-binding lectin-associated serine protease (MASP). Analyses of a full-length cDNA clone isolated from a hagfish liver cDNA library by using the partial cDNA as a probe indicated that this cDNA encoded hagfish MASP 1. This evidence strongly suggests that the hagfish defends itself against pathogens at least by the complement system composed of lectin pathway.  相似文献   

12.
Human mannose-binding lectin (MBL) is a serum protein of the innate immune system that circulates as a complex with a group of so-called MBL-associated serine proteases (MASP-1, MASP-2, and MASP-3). Complexes of MBL-MASP2 are able to activate the complement system in an Ab and C1-independent fashion after binding of the lectin to appropriate microbial sugar arrays. We have evaluated the additive effect of the lectin pathway relative to other complement activation pathways and the subsequent effect on neutrophil phagocytosis. Complement activation in the sera of MBL-deficient individuals was studied with and without the addition of exogenous MBL-MASP. Flow cytometry was used to measure the deposition of C4, factor B, C3b, and iC3b on Staphylococcus aureus. Deposition of the first cleavage product of the lectin pathway, C4b, was increased using the sera of three different MBL-deficient individuals when exogenous MBL-MASP was added. Factor B was deposited in association with C4, but there was no evidence of independent alternative pathway activation. Similar enhancement of C3b deposition was also observed, with evidence of elevated amounts of C3b processed to iC3b. The increase in opsonic C3 fragments mediated by MBL was associated with a significant increase in the uptake of organisms by neutrophils. We also observed significant increases in phagocytosis with MBL-MASPs that were independent of complement activation. We conclude that MBL-MASP makes a major contribution to complement-mediated host defense mechanisms.  相似文献   

13.
Guinea pig erythrocytes that had been exposed to influenza A virus activated the alternative complement pathway in whole human serum in the absence of natural antibodies. Because all virus particles were eluted from the treated cells, activation was not dependent on antiviral antibodies or on virus particles themselves. The relative capacity of treated erythrocytes to activate the alternative pathway was dependent on the amount of virus to which the cells had been exposed and was directly related to the amount of sialic acid removed from the erythrocyte membrane during incubation with either whole virus particles or purified viral sialidase. C3b bound to cells that had been treated with virus, and P-stabilized amplification convertase sites P,C3b,Bb formed on these cells, exhibited increased resistance to the action of the regulatory proteins beta-1H and C3b Ina compared with C3b and P,C3b,Bb on untreated, nonactivating cells. The acquired resistance of the cell-bound, P-stabilized amplification convertase to decay-dissociation by beta-1H was directly related to the activating capacity of the treated cells in whole serum (r = 0.95) and to the amount of sialic acid removed from the cells by the virus (r = 0.98). Desialation represents a specific alteration of the cell surface by which a nonimmune host, through activation of the alternative pathway, may deposit C3b on a target cell that had been exposed to influenza virus and may lyse virus virus-modified cells during orthomyxovirus infections.  相似文献   

14.
The complement system presents a powerful defense against infection and is tightly regulated to prevent damage to self by functionally equivalent soluble and membrane regulators. We describe complement C2 receptor inhibitor trispanning (CRIT), a novel human complement regulatory receptor, expressed on hemopoietic cells and a wide range of tissues throughout the body. CRIT is present in human parasites through horizontal transmission. Serum complement component C2 binds to the N-terminal extracellular domain 1 of CRIT, which, in peptide form, blocks C3 convertase formation and complement-mediated inflammation. Unlike C1 inhibitor, which inhibits the cleavage of C4 and C2, CRIT only blocks C2 cleavage but, in so doing, shares with C1 inhibitor the same functional effect, of preventing classical pathway C3 convertase formation. Ab blockage of cellular CRIT reduces inhibition of cytolysis, indicating that CRIT is a novel complement regulator protecting autologous cells.  相似文献   

15.
Streptococcus pneumoniae is a common cause of septicemia in the immunocompetent host. To establish infection, S. pneumoniae has to overcome host innate immune responses, one component of which is the complement system. Using isogenic bacterial mutant strains and complement-deficient immune naive mice, we show that the S. pneumoniae virulence factor pneumolysin prevents complement deposition on S. pneumoniae, mainly through effects on the classical pathway. In addition, using a double pspA-/ply- mutant strain we demonstrate that pneumolysin and the S. pneumoniae surface protein PspA act in concert to affect both classical and alternative complement pathway activity. As a result, the virulence of the pspA-/ply- strain in models of both systemic and pulmonary infection is greatly attenuated in wild-type mice but not complement deficient mice. The sensitivity of the pspA-/ply- strain to complement was exploited to demonstrate that although early innate immunity to S. pneumoniae during pulmonary infection is partially complement-dependent, the main effect of complement is to prevent spread of S. pneumoniae from the lungs to the blood. These data suggest that inhibition of complement deposition on S. pneumoniae by pneumolysin and PspA is essential for S. pneumoniae to successfully cause septicemia. Targeting mechanisms of complement inhibition could be an effective therapeutic strategy for patients with septicemia due to S. pneumoniae or other bacterial pathogens.  相似文献   

16.
Complement is an essential component of innate immunity and a major trigger of inflammatory responses. A critical step in complement activation is the formation of the C3 convertase of the alternative pathway (AP), a labile bimolecular complex formed by activated fragments of the C3 and factor B components that is fundamental to provide exponential amplification of the initial complement trigger. Regulation of the AP C3 convertase is essential to maintain complement homeostasis in plasma and to protect host cells and tissues from damage by complement. During the last decade, several studies have associated genetic variations in components and regulators of the AP C3 convertase with a number of chronic inflammatory diseases and susceptibility to infection. The functional characterization of these protein variants has helped to decipher the critical pathogenic mechanisms involved in some of these complement related disorders. In addition, these functional data together with recent 3D structures of the AP C3 convertase have provided fundamental insights into the assembly, activation and regulation of the AP C3 convertase.  相似文献   

17.
C-reactive protein (CRP) is a serum protein that shows rapid increases of as much as 1000-fold in concentration in response to infection, traumatic injury, or inflammation. CRP reacts with the phosphocholine moiety of pneumococcal cell wall C-polysaccharide, and this reaction can lead to complement activation in vitro and protection against pneumococcal infection in vivo. We have previously studied the chemiluminescence response of human neutrophils to Streptococcus pneumoniae as a measure of in vitro opsonophagocytosis by CRP and complement. CRP in the presence of complement was an effective opsonin for S. pneumoniae serotype 27 (Pn27), but not for serotypes 3 or 6. Because Pn27 differs from most serotypes of S. pneumoniae in containing phosphocholine in its capsular polysaccharide, we have determined the sites of CRP and C3 fixation to Pn27 and S. pneumoniae serotype 4 (Pn4), and related these to the ability of CRP and complement to opsonize these serotypes in vitro. By using a chemiluminescence (CL) assay to measure opsonophagocytosis, CRP was shown to enhance the response of human neutrophils and monocytes to Pn27 in the presence of normal human serum. The CL response of neutrophils and monocytes to Pn4 was not affected by the addition of CRP to serum. The addition of anti-capsular antibody to Pn4 and Pn27 enhanced the CL responses of both neutrophils and monocytes to both bacteria. The localization of bound CRP and C3 on Pn4 and Pn27 was determined by immunoelectron microscopy. CRP bound to Pn4 only in the cell wall region and C3 was located in this area whether or not CRP was present. Anti-capsular antibody deposited C3 in the capsule of Pn4. In contrast, Pn27 bound CRP throughout the capsule and cell wall areas. C3 was deposited in the cell wall region of Pn27 by serum alone and in the cell wall region and capsule when CRP or anti-capsular antibody was present. Because C3 fixation to the capsule was consistently associated with enhanced responses by phagocytic cells, it appears that the site of CRP binding and subsequent complement activation may be critical in the opsonophagocytosis of S. pneumoniae. These findings extend the correlation between capsular C3 and opsonization to a nonimmune system. By using CRP and different pneumococcal serotypes we have shown that the same molecules that are effective in the stimulation of phagocytic cells when bound to the capsule are not effective when bound to the cell wall.  相似文献   

18.
The complement system is important in both innate and adaptive host defense against microbial infection in vertebrates. It contains three pathways: the classical, alternative, and lectin pathways. Complement component factors B and D are two crucial proteases in the alternative pathway. In this study, the genes of complement factors Bf/C2 and Df from channel catfish, Ictalurus punctatus were identified and characterized. Two complement factor B-related genes, Bf/C2A and Bf/C2B, and factor D gene Df were identified. Phylogenetic analysis suggested that Bf/C2A and Bf/C2B is likely orthologous to factor B and factor C2, respectively. Southern blot results suggested that these three genes are all single-copy genes in the catfish genome. The catfish Bf/C2A, Bf/C2B and Df genes were genetically mapped on linkage group 3, 20 and 29, respectively. Bf/C2A and Bf/C2B are highly expressed in liver and kidney, while Df is highly expressed in gill and spleen. After infection with Edwardsiella ictaluri, the expression of Bf/C2A, Bf/C2B and Df genes were found to be remarkably induced in the gill, liver, spleen and kidney at some sampling times, indicating that these three complement factors play a pivotal role in immune responses after the bacterial infection in catfish.  相似文献   

19.
A complement-resistant line of HeLa cells (T638) was derived by serial passage of complement-susceptible HeLa cells in anti-beta 2-microglobulin (b2m) antiserum and complement. The T638 line maintained stable complement resistance when passed for an additional 1500 generations in the absence of antiserum and complement. T638 cells expressed equivalent levels of cell-associated b2m as did the parent HeLa cell line. Furthermore, T638 cells were resistant to killing by complement and anti-HeLa antiserum with specificity for molecules other than b2m. These results indicate that the resistance of T638 cells does not simply reflect loss of anti-b2m binding antigens. We next investigated the mechanism of resistance of T638 cells to complement-mediated killing. Antibody-sensitized HeLa and T638 cells both consumed CH50 activity completely from normal human serum; cytotoxicity was not mediated via the alternative complement pathway. HeLa and T638 cells caused equivalent utilization of C4 from normal human serum in the presence of antibody. Consumption of C2, greater with T638 than with HeLa cells during incubation in serum, was complete when cells bearing purified C1 and limited C4 were incubated with C2. T638 cells bound more 3H-C4 than HeLa cells during incubation in serum, but binding of 3H-C3 by T638 cells was fourfold to fivefold less than by HeLa cells. Finally, we investigated the rate of decay in the capacity of C142 on HeLa and T638 to cleave and deposit 3H-C3. The T1/2 for decay of C142-mediated binding of 3H-C3 on HeLa was 3.9 min, whereas minimal C3 deposition was detected on T638 cells at all time points. These results show that T638 cells evade complement-mediated lysis despite activating early components of the classical complement pathway. The mechanism of resistance is a failure to form an effective C3 convertase.  相似文献   

20.
The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating Ficolin-3 mediated complement activation that could be applicable for research and clinical use. Bovine serum albumin (BSA) was acetylated (acBSA) and chosen as a solid phase ligand for Ficolins in microtiter wells. Binding of Ficolins on acBSA was evaluated, as was functional complement activation assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition on acBSA were dependent only on Ficolin-3 in appropriate serum dilutions. Deposition of down stream complement components correlated highly significantly with the serum concentration of Ficolin-3 but not with Ficolin-2 in healthy donors. To make the assay robust for clinical use a chemical compound was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides the possibility to diagnose functional and genetic defects of Ficolin-3 and down stream components in the lectin complement pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号