首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The carboxylation of pyruvate to oxaloacetate by pyruvate carboxylase in guinea-pig liver mitochondria was determined by measuring the amount of (14)C from H(14)CO(3) (-) fixed into organic acids in the presence of pyruvate, ATP, Mg(2+) and P(i). The main products of pyruvate carboxylation were malate, fumarate and citrate. Pyruvate utilization, metabolite formation and incorporation of (14)C from H(14)CO(3) (-) into these metabolites in the presence and the absence of ATP were examined. The synthesis of phosphoenolpyruvate from pyruvate and bicarbonate is minimal during continued oxidation of pyruvate. Larger amounts of phosphoenolpyruvate are formed from alpha-oxoglutarate than from pyruvate. Addition of glutamate, alpha-oxoglutarate or fumarate did not appreciably increase formation of phosphoenolpyruvate when pyruvate was used as substrate. With alpha-oxoglutarate as substrate addition of fumarate resulted in increased formation of phosphoenolpyruvate, whereas addition of succinate inhibited phosphoenolpyruvate formation. In the presence of added oxaloacetate guinea-pig liver mitochondria synthesized phosphoenolpyruvate in amount sufficiently high to play an appreciable role in gluconeogenesis. 2. Addition of fatty acids of increasing carbon chain length caused a strong inhibition of pyruvate oxidation and phosphoenolpyruvate formation, and greatly promoted carbon dioxide fixation and malate, citrate and acetoacetate accumulation. The incorporation of (14)C from H(14)CO(3) (-), [1-(14)C]pyruvate and [2-(14)C]pyruvate into organic acids formed was examined. 3. It is concluded that guinea-pig liver pyruvate carboxylase contributes significantly to gluconeogenesis and that fatty acids and metabolites play an important role in its regulation.  相似文献   

2.
Some aspects of tricarboxylic acid-cycle activity during differentiation and aging in Dictyostelium discoideum were examined. The concentrations of glutamate, aspartate, alanine, citrate, 2-oxoglutarate, succinate, fumarate, malate, oxaloacetate, pyruvate and acetyl-CoA were determined at four stages over the course of differentiation. The rate of O2 utilization was also determined over differentiation. In addition, experiments are described in which the specific radioactivities of citrate, 2-oxoglutarate, succinate, fumarate and malate were determined during a 30 min labelling of cells from the preculmination stage of development with [14C]glutamate, [14C]aspartate or [14C]alanine. A similar experiment was also performed with cells from the aggregation stage of development using [14C]glutamate.  相似文献   

3.
Rat lung mitochondrial preparations were incubated in the presence of pyruvate and malate. The principal metabolic products measured were citrate and CO2. Citrate formation from pyruvate was found to be dependent on the presence of malate. Significant citrate was formed in the presence of isocitrate and the rate of citrate formation was increased by the addition of pyruvate. Small amounts of citrate were formed by lung mitochondrial preparations in the presence of 2-oxoglutarate and succinate only after the addition of pyruvate. The level of acetyl-CoA was significantly greater in the presence of pyruvate than in the presence of pyruvate plus malate. The addition of malate to lung mitochondrial preparations increased 14CO2 production from [U-14C]- and [1-14C] pyruvate but decreased its production from [2-14C]- and [3-14C]-pyruvate. However, malate increased the incorporation of [2-14C] pyruvate into malate and citrate. A low level of pyruvate-dependent H14CO8-incorporation into acid-stable products was observed, principally citrate and malate, but this rate did not exceed 5% of the rate of net citrate formation in the presence of malate and pyruvate. The capacity of rat lung mitochondria to form oxaloacetate from pyruvate alone in vitro is very limited, and would appear to cast doubt on a major role of pyruvate carboxylase in citrate formation. It is concluded that the rate of citrate formation from pyruvate is limited by the availability of intramitochondrial oxaloacetate and the rate of citrate efflux across the mitochondrial membrane.  相似文献   

4.
The biotin-containing oxaloacetate decarboxylase from Klebsiella aerogenes catalyzed the Na+-dependent decarboxylation of oxaloacetate to pyruvate and bicarbonate (or CO2) but not the reversal of this reaction, not even in the presence of an oxaloacetate trapping system. The enzyme catalyzed an avidin-sensitive isotopic exchange between [1-14C]pyruvate and oxaloacetate, which indicated the intermediate formation of a carboxybiotin enzyme. Sodium ions were not required for this partial reaction, but promoted the second partial reaction, the decarboxylation of the carboxybiotin enzyme, thus accounting for the Na+ requirement of the overall reaction. Therefore, the 14CO2-enzyme which was formed upon incubation of the decarboxylase with [4-15C]oxaloacetate, could only be isolated if Na+ ions were excluded. Preincubation of the decarboxylase with avidin also prevented its labelling with 14CO2. The isolated 14CO2-labelled oxaloacetate decarboxylase revealed the following properties. It was slowly decarboxylated at neutral pH and rapidly upon acidification. The 14CO2 residues of the 14CO2-enzyme could be transferred to pyruvate yielding [4-14C]oxaloacetate. In the presence of Na+ this 14CO2 transfer was repressed by the simultaneous decarboxylation of the 14CO2-enzyme. However, Na+ alone was insufficient as a cofactor for the decarboxylation of the isolated 14CO2-enzyme, since this required pyruvate in addition to Na+. It is therefore concluded that the decarboxylation of oxaloacetate proceeds over a CO2-enzyme--pyruvate complex and that free CO2-enzyme is an abortive reaction intermediate. The activation energy of the enzymic decarboxylation of oxaloacetate changed with temperature and was about 113 kJ below 11 degrees C, 60 kJ between 11 degrees C and 31 degrees C and 36 kJ between 31--45 degrees C.  相似文献   

5.
A technique to measure the activity of pyruvate carboxylase spectrophotometrically in crude liver homogenates is described. The assay is based on the transformation of oxaloacetate, which is formed during the carboxylation reaction, into citrate in the presence of excess acetyl CoA and citrate synthase. After removal of pyruvate with KBH4 and of protein with HClO4, citrate is cleaved with citrate lyase into oxaloacetate and acetate, and oxaloacetate then is measured spectrophotometrically. Optimal concentrations of pyruvate, Mg2+, ATP, and KHCO3 for the carboxylation reaction and the Vmax were in good correlation with the data found by others using [14C]pyruvate.  相似文献   

6.
1. The equations derived by Heath (1968) were applied to data from experiments on rats in four metabolic states: fed, post-absorptive, starved and 2hr. after an eventually lethal injury. The data used were: (a) The fractions of label injected as C1-, C2- and C3-pyruvate (where the prefix indicates the position of labelling) that are incorporated into carbon dioxide and glucose in post-absorptive and injured rats (yields). Yields could be corrected to yields on label taken up by the liver. (b) The (C5-label in glutamate)/(total label in glutamate) ratio in the liver after C2-pyruvate in rats in all four states. (c) The distribution of label within glutamate after C2-pyruvate or C2-alanine in the livers of fed, post-absorptive and starved rats. (d) The distribution of label within glucose after C2-lactate or C2-pyruvate in starved rats. (e) The relative specific radioactivities of pyruvate, aspartate, glutamate and (in two states only) of glucose 6-phosphate after injection of [U-(14)C]glucose into rats in all four states. These data were previously published, except those after (e) and some after (b) above, which are given in this paper. 2. In addition the concentrations of pyruvate, citrate, glutamate and aspartate in the livers of post-absorptive and injured rats were found. Injury decreased glutamate and citrate concentrations and to a smaller extent aspartate and pyruvate concentrations. 3. Non-steady-state theory showed that most of the data could be used without serious error in steady-state theory. Steady-state theory correlated all but one observation (the relative yields of (14)CO(2) from C2- and C3-pyruvate) listed after (a)-(e) above within the experimental errors, and gave rough estimates of the rates of pyruvate carboxylation, conversion of pyruvate and fat into acetyl-CoA and utilization of glutamate. The main conclusions were: (a) symmetrization of label in oxaloacetate both in the mitochondrion and in the cytoplasm was far from complete, because oxaloacetate did not equilibrate with fumarate in either. From this and other findings it was deduced: (b) that malate or fumarate or both left the mitochondrion, and not oxaloacetate; (c) that there was a loss from the mitochondrion of a fraction of the malate or fumarate or both formed from succinate, and (d) the resulting deficiency of oxaloacetate for the perpetuation of the tricarboxylic acid cycle was made up from pyruvate in fed and post-absorptive rats, but (e) in the starved rat could only be made up by utilization of glutamate. (f) In the fed rat the tricarboxylic acid cycle ran mostly on pyruvate, but in the post-absorptive and starved rat mostly on fat. (g) In the injured rat the tricarboxylic acid cycle was slowed, label in oxaloacetate was completely symmetrized (cf. conclusion a), and the tricarboxylic acid cycle utilized glutamate. (h) The conclusions were not invalidated by isotopic exchange, i.e. flux of label without net flux of compound, nor by interaction with lipogenic processes. (i) In the kidneys interaction between the tricarboxylic acid cycle and gluconeogenesis was different from in the liver, and was much less. The effects on the theory were roughly assessed, and were small. 4. The experiments and optimum experimental conditions required to check the theory are listed, and several predictions, open to experimental confirmation, are made.  相似文献   

7.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

8.
Summary Cessation of gluconeogenesis during oocyte maturation inMisgurnus fossilis L. is accompanied by an increase of pyruvate dehydrogenase activity (EC 1.2.4.1). The activity of other enzymes of citrate and pyruvate metabolism (citrate synthetase, EC 4.1.3.7, pyruvate carboxylase, EC 6.4.1.1., malate dehydrogenase, EC 1.1.1.37) remains constant during oocyte maturation and early embryogenesis.In the course of oocyte maturation the levels of acetyl-CoA, pyruvate and citrate remained unchanged, but the level of malate and oxaloacetate underwent drastic increase. The level of phosphoenolpyruvate increased about two-fold. The mitochondrial (NAD+)/(NADH) ratio was calculated by measurement of intermediates of the glutamate dehydrogenase reaction and it was found to increase six-fold during oocyte maturation. The lower mitochondrial (NAD+)/(NADH) ratio in oocytes compared to that in the embryos is likely to be responsible for the transfer of reducing equivalents from mitochondria to cytoplasm, while in embryos transfer in the opposite direction takes place.  相似文献   

9.
The mechanism of oxaloacetate efflux from rat kidney mitochondria has been investigated in view of its possible role both in gluconeogenesis and in transferring cytosolic reducing equivalents into mitochondria. Thus reconstruction of the malate/oxaloacetate shuttle made possible by the oxaloacetate carrier has been made. Moreover the existence of a separate translocator able to allow a bidirectional alpha-cyanocinnamate-insensitive pyruvate/oxaloacetate exchange has been ascertained. This carrier is specific of gluconeogenetic organs in particularly of kidney, where it shows a marked affinity for pyruvate (Km = 0.45 mM and Vmax = 38 nmoles oxaloacetate effluxed/min X mg mitochondrial protein at 20 degrees C). Some features of both pyruvate/oxaloacetate and malate/oxaloacetate exchanges are also described.  相似文献   

10.
To gain some insight into the process by which both acetylCoA and NADPH, needed for fatty acid synthesis, are obtained, in the cytosol, from the effluxed intramitochondrial citrate, via citrate lyase and malate dehydrogenase plus malic enzyme respectively, the capability of externally added pyruvate to cause efflux of malate from rat liver mitochondria was tested. The occurrence of a pyruvate/malate translocator is here shown: pyruvate/malate exchange shows saturation features (Km and Vmax values, measured at 20 degrees C and at pH 7.20, were found to be about 0.25 mM and 2.7 nmoles/min x mg mitochondrial protein, respectively) and is inhibited by certain impermeable compounds. This carrier, together with the previously reported tricarboxylate and oxodicarboxylate translocators proved to allow for citrate and oxaloacetate efflux due to externally added pyruvate.  相似文献   

11.
A scheme is presented that shows how the reactions involved in gluconeogenesis, glycolysis and the tricarboxylic acid cycle are linked in rat liver. Equations are developed that show how label is redistributed in aspartate, glutamate and phosphopyruvate when it is introduced as specifically labelled pyruvate or glucose either at a constant rate (steady-state theory) or at a variable rate (non-steady-state theory). For steady-state theory the fractions of label introduced as specifically labelled pyruvate that are incorporated into glucose and carbon dioxide are also given, and for both theories the specific radioactivities of aspartate and glutamate relative to the specific radioactivity of the substrate. The theories allow for entry of label into the tricarboxylic acid cycle via both oxaloacetate and acetyl-CoA, for (14)CO(2) fixation and for loss of label from the tricarboxylic acid cycle in glutamate, but not for losses in citrate. They also allow for incomplete symmetrization of label in oxaloacetate due to incomplete equilibration with fumarate both in the extramitochondrial part of the cell and in the mitochondrion on entry of oxaloacetate into the tricarboxylic acid cycle. In the latter case failure both of oxaloacetate to equilibrate with malate and of malate to equilibrate with fumarate are considered.  相似文献   

12.
1. When [2-(14)C]pyruvate is injected into rats the C3-position of liver glutamate becomes more heavily labelled than the C2-position, thus establishing that oxaloacetate and fumarate are not in equilibrium in rat liver mitochondria in vivo. The amount of disequilibrium was shown to be simply related to the value that the C3-label/C2-label ratio would have were no label recycled. This ratio, z, was calculated for post-absorptive rats in environmental temperatures of 20 degrees and 30 degrees C from determinations of the distribution of label within glutamate 1, 3 and 10min after intravenous injection of [2-(14)C]pyruvate. The values of z (best estimate and range) were 1.65 (1.60-1.69) in rats at 20 degrees C and 2.43 (2.23-2.63) in rats at 30 degrees C. These values of z imply the following rates of interconversion in mitochondria of fumarate and oxaloacetate (in terms of the oxaloacetate-->citrate flux, R) in rats at 20 degrees C: [Formula: see text] and in rats at 30 degrees C: [Formula: see text] 2. The kinetic parameters of malate dehydrogenase and fumarate hydratase and the intramitochondrial concentrations of NAD(+) and NADH under (as far as could be judged) conditions in vivo were collated. From them and the best estimates of R now available were calculated the rates of interconversion of fumarate, malate and oxaloacetate required to give the found values of z. These rates showed that the fumarate hydratase reaction was nearly in equilibrium, but that the malate dehydrogenase reaction was considerably out of equilibrium. The calculations also led to the following conclusions. 3. In livers of rats at 20 degrees and 30 degrees C mitochondrial malate concentrations were respectively about 5 and 1.5 times mean cellular concentrations. 4. Mitochondrial oxaloacetate concentrations were less than 0.2 of the mean cellular concentrations. They were also only 0.65 and 0.55 of the equilibrium concentrations for the malate dehydrogenase reaction in rats at 20 degrees and 30 degrees C respectively. 5. Malate dehydrogenase activity was low because of the very low oxaloacetate concentrations in the mitochondria and the very small fraction of the enzyme complexed with NAD(+), i.e. in each direction one substrate concentration was very sub-optimal.  相似文献   

13.
When chicken liver pyruvate carboxylase was incubated with either H14CO3- or gamma-[32P]ATP, a labeled carboxyphospho-enzyme intermediate could be isolated. The complex was catalytically competent, as determined by its subsequent ability to transfer either 14CO2 to pyruvate or 32P to ADP. While the carboxyphospho-enzyme complex was inherently unstable and the stoichiometry of the transfer was variable depending on experimental conditions, both the [14C]carboxyphospho-enzyme and the carboxy[32P]phospho-enzyme had similar half-lives. Acetyl-CoA was shown to be involved in the conversion of the carboxyphospho-enzyme complex to the more stable carboxybiotin-enzyme species, which was consistent with the effects of acetyl-CoA on isotope exchange reactions involving ATP. We were unable to detect the formation of a phosphorylated biotin derivative during the ATP cleavage reaction. In the presence of K+ and at pH 9.5, the acetyl-CoA-independent activity of chicken liver pyruvate carboxylase approached 2% of the acetyl-CoA-stimulated rate, which represents a 30-fold increase on previously reported activity for this enzyme.  相似文献   

14.
Addition of phenylephrine to isolated perfused rat liver is followed by an increased 14CO2 production from [1-14C]glutamate, [1-14C]glutamine, [U-14C]proline and [3-14C]pyruvate, but by a decreased 14CO2 production from [1-14C]pyruvate. Simultaneously, there is a considerable decrease in tissue content of 2-oxoglutarate, glutamate and citrate. Stimulation of 14CO2 production from [1-14C]glutamate is also observed in the presence of amino-oxyacetate, suggesting a stimulation of glutamate dehydrogenase and 2-oxoglutarate dehydrogenase fluxes by phenylephrine. Inhibition of pyruvate dehydrogenase flux by phenylephrine is due to an increased 2-oxoglutarate dehydroxygenase flux. Phenylephrine stimulates glutaminase flux and inhibits glutamine synthetase flux to a similar extent, resulting in an increased hepatic glutamine uptake. Whereas the effects of NH4+ ions and phenylephrine on glutaminase flux were additive, activation of glutaminase by glucagon was considerably diminished in the presence of phenylephrine. The reported effects are largely overcome by prazosin, indicating the involvement of alpha-adrenergic receptors in the action of phenylephrine. It is concluded that stimulation of gluconeogenesis from various amino acids by phenylephrine is due to an increased flux through glutamate dehydrogenase and the citric acid cycle.  相似文献   

15.
The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TCA-cycle-related pathways. Results of this study indicated that the ratio of 14CO2 produced from [1,4-14C]succinate to 14CO2 produced from [2,3-14C]succinate was increased by the addition of glutamine (5 mM) to the medium. An increase in the succinate CO2 ratio is quantitatively related to an increased flux of unlabelled carbon into the TCA-cycle-intermediate pools. Analysis of 14C distribution in [14C]citrate derived from [2,3-14C]succinate indicated that flux from the TCA cycle to the acetyl-CoA-derived carbons of citrate was insignificant. Thus the increased succinate CO2 ratio observed in the presence of glutamine could only result from an increased flux of carbon into the span of the TCA cycle from citrate to oxaloacetate. This result is consistent with increased flux of glutamine to alpha-oxoglutarate in the incubation medium containing exogenous glutamine. Comparison of the pyruvate CO2 ratio, steady-state 14CO2 production from [2-14C]pyruvate versus [3-14C]pyruvate, with the succinate 14CO2 ratio detected flux of pyruvate to C4 TCA-cycle intermediates in the medium containing glutamine. This result was consistent with the observation that [14C]aspartate derived from [2-14C]pyruvate was labelled in C-2 and C-3. 14C analysis also produced evidence for flux of TCA-cycle carbon to alanine. This study demonstrates that the CO2-ratios method is applicable in the analysis of the metabolic properties of AS-30D cells. This methodology has verified that the atypical TCA-cycle metabolism previously described for AS-30D-cell mitochondria occurs in intact AS-30D rat hepatoma cells.  相似文献   

16.
1. The role of pyruvate carboxylation in the net synthesis of tricarboxylic acid-cycle intermediates during acetate metabolism was studied in isolated rat hearts perfused with [1-14C]pyruvate. 2. The incorporation of the 14C label from [1-14C]pyruvate into the tricarboxylic acid-cycle intermediates points to a carbon input from pyruvate via enzymes in addition to pyruvate dehydrogenase and citrate synthase. 3. On addition of acetate, the specific radioactivity of citrate showed an initial maximum at 2 min, with a subsequent decline in labelling. The C-6 of citrate (which is removed in the isocitrate dehydrogenase reaction) and the remainder of the molecule showed differential labelling kinetics, the specific radioactivity of C-6 declining more rapidly. Since this carbon is lost in the isocitrate dehydrogenase reaction, the results are consistent with a rapid inactivation of pyruvate dehydrogenase after the addition of acetate, which was confirmed by measuring the 14CO2 production from [1-14C]pyruvate. 4. The results can be interpreted to show that carboxylation of pyruvate to the C4 compounds of the tricarboxylic acid cycle occurs under conditions necessitating anaplerosis in rat myocardium, although the results do not identify the enzyme involved. 5. The specific radioactivity of tissue lactate was too low to allow it to be used as an indicator of the specific radioactivity of the intracellular pyruvate pool. The specific radioactivity of alanine was three times that of lactate. When the hearts were perfused with [1-14C]lactate, the specific radioactivity of alanine was 70% of that of pyruvate. The results suggest that a subcompartmentation of lactate and pyruvate occurs in the cytosol.  相似文献   

17.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

18.
1. The subcellular distribution of adenine nucleotides, acetyl-CoA, CoA, glutamate, 2-oxoglutarate, malate, oxaloacetate, pyruvate, phosphoenolpyruvate, 3-phosphoglycerate, glucose 6-phosphate, aspartate and citrate was studied in isolated hepatocytes in the absence and presence of glucagon by using a modified digitonin procedure for cell fractionation. 2. In the absence of glucagon, the cytosol contains about two-thirds of cellular ATP, some 40-50% of ADP, acetyl-CoA, citrate and phosphoenolpyruvate, more than 75% of total 2-oxoglutarate, glutamate, malate, oxaloacetate, pyruvate, 3-phosphoglycerate and aspartate, and all of glucose 6-phosphate. 3. In the presence of glucagon the cytosolic space shows an increase in the content of malate, phosphoenolpyruvate and 3-phosphoglycerate by more than 60%, and those of aspartate and glucose 6-phosphate rise by about 25%. Other metabolites remain unchanged. After glucagon treatment, cytosolic pyruvate is decreased by 37%, whereas glutamate and 2-oxoglutarate decrease by 70%. The [NAD(+)]/[NADH] ratios calculated from the cytosolic concentrations of the reactants of lactate dehydrogenase and malate dehydrogenase were the same. Glucagon shifts this ratio and also that of the [NADP(+)]/[NADPH] couple towards a more reduced state. 4. In the mitochondrial space glucagon causes an increase in the acetyl-CoA and ATP contents by 25%, and an increase in [phosphoenolpyruvate] by 50%. Other metabolites are not changed by glucagon. Oxaloacetate in the matrix is only slightly decreased after glucagon, yet glutamate and 2-oxoglutarate fall to about 25% of the respective control values. The [NAD(+)]/[NADH] ratios as calculated from the [3-hydroxybutyrate]/[acetoacetate] ratio and from the matrix [malate]/[oxaloacetate] couple are lowered by glucagon, yet in the latter case the values are about tenfold higher than in the former. 5. Glucagon and oleate stimulate gluconeogenesis from lactate to nearly the same extent. Oleate, however, does not produce the changes in cellular 2-oxoglutarate and glutamate as observed with glucagon. 6. The changes of the subcellular metabolite distribution after glucagon are compatible with the proposal that the stimulation of gluconeogenesis results from as yet unknown action(s) of the hormone at the mitochondrial level in concert with its established effects on proteolysis and lipolysis.  相似文献   

19.
This work was performed to gain more information on the role of pyruvate kinase isoenzymes in the regulation of renal carbohydrate metabolism. Immunohistochemically, pyruvate kinase type L is shown to be localized in the proximal tubule of the nephron and pyruvate kinase type M2 in the distal tubule and the collecting duct. a tight relationship between gluconeogenesis and pyruvate recycling was found. The rate of gluconeogenesis (8 mumol/g wet wt. per 30 min) was of the same order of magnitude as the rate of pyruvate recycling (10.92 mumol/g wet wt. per 30 min). Stimulation of gluconeogenesis from 20 mM lactate in kidney cortex slices of 24-h-starved rats by dibutyryl-cAMP, alanine and parathyroid hormone was connected with a decrease in pyruvate recycling; inhibition of gluconeogenesis due to a lack of Ca2+ in the incubation medium was linked with an increase in pyruvate recycling. The degradation of [6-14C]glucose to lactate, pyruvate, ketone bodies and CO2 and of [2-14C]lactate was unaffected by dibutyryl-cAMP, alanine, epinephrine, vasopressin or the omission of Ca2+ from the incubation medium. 1 mM dibutyryl-cAMP or 5 mM alanine did not alter the activities of oxaloacetate decarboxylase, 'malic' enzyme and malate dehydrogenase from rat kidney cortex. Since aerobic glycolysis in the distal tubules and the collecting ducts is not influenced by hormones, dibutyryl-cAMP and Ca2+, pyruvate kinase type M2 residing in this tissue is unlikely to be a control point of glycolysis. Since this tissue degrades only one-seventh of the glucose formed via gluconeogenesis, it does not contribute significantly to pyruvate recycling. Therefore, the decrease of pyruvate recycling in the presence of dibutyryl-cAMP and alanine in rat kidney cortex slices, leading to increased renal gluconeogenesis, has to be ascribed to the regulation of pyruvate kinase type L.  相似文献   

20.
Formation of malate from glyoxylate in animal tissues   总被引:2,自引:1,他引:1  
1. Incubation of rat liver homogenate with [1-(14)C]glyoxylate, ATP and acetate shows a rapid sequential incorporation of radioactivity into malate, oxaloacetate and citrate. 2. In liver from normal rats the rate of the formation of each substance in question is higher than that in liver from thiamin-deficient rats. 3. The net accumulation of malate is greater with liver from thiamin-deficient rats. Its further metabolism is retarded, it is suggested, by inhibitors formed by a condensation of glyoxylate and oxaloacetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号