首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Occurrence of mature B (IgM+, B220+) and T (CD3+) lymphocytes in scid mice   总被引:15,自引:0,他引:15  
Scid mice with and without detectable serum Ig (scid Ig+ and scid Ig- mice, respectively) were examined for the presence of mature "leaky" lymphocytes by flow microfluorimetry with the use of antibodies to B (IgM, B220) and T (CD3, CD4, CD8) lymphocyte surface Ag. The data showed that leaky scid mice are more frequent than is evident from serum Ig analysis and that the incidence of detectable B and T cells increases with age. IgM+ B220+ cells were not detectable in young adult mice (3 mo old), but in old mice (greater than or equal to 1 yr old) they were routinely present in the peritoneal cavity though not in the spleen. Striking differences in the representation of T cell subsets were seen in the thymus of these two age groups. Most young adult mice contained CD3- populations of CD4/CD8 double positive cells, and in some cases, CD4 or CD8 single positive cells as well. By contrast, identifiable T lineage cells in old mice were all CD3+ and predominantly single positive for CD4 or CD8. Detectable peripheral T cell populations numbered less than 10(5) cells, and the representation of T subset markers (CD4, CD8) varied widely among individual mice; further, Southern blot analysis of TCR gene rearrangements in the DNA of polyclonally stimulated lymphoid cultures from these mice showed very restricted heterogeneity relative to that of cultures from normal mice. We conclude that most leaky mice contain very few T cell clones.  相似文献   

2.
Scid mice express a truncated form of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) and are unable to properly rearrange their Ig and TCR genes, resulting in a severe combined immunodeficiency that is characterized by arrested differentiation of B and T lymphocytes. Treatment of scid mice with low doses of gamma irradiation rescues rearrangements at several TCR loci and promotes limited thymocyte differentiation. The machinery responsible for sensing DNA damage and the mechanism by which irradiation compensates for the scid defect in TCR recombination remain unknown. Because DNA-PKcs is present in scid thymocytes, it may mediate some or all of the irradiation effects. To test this hypothesis, we examined the effects of irradiation on DNA-PKcs-deficient (slip) mice. Our data provide the first evidence that DNA-PKcs is not required for limited rescue of thymocyte differentiation or TCR rearrangements.  相似文献   

3.
4.
5.
6.
7.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

8.
A process unique to lymphocyte differentiation is the rearrangement of genes encoding antigen-specific receptors on B and T cells. A mouse mutant (C.B-17scid) with severe combined immune deficiency, i.e., that lacks functional B and T cells, shows no evidence of such gene rearrangements. However, rearrangements were detected in Abelson murine leukemia virus-transformed bone marrow cells and in spontaneous thymic lymphomas from C.B-17scid mice. Most of these rearrangements were abnormal: approximately 80% of Igh rearrangements deleted the entire Jh region, and approximately 60% of TCR beta rearrangements deleted the entire J beta 2 region. The deletions appeared to result from faulty D-to-J recombination. No such abnormal rearrangements were detected in transformed tissues from control mice. The scid mutation may adversely affect the recombinase system catalyzing the assembly of antigen receptor genes in developing B and T lymphocytes.  相似文献   

9.
Defective recombination of both the TCR and Ig genes results in the absence of mature lymphocytes in mice with the scid mutation. We have shown previously that the transfer of neonatal, but not adult, thymocytes results in high levels of Ig production in 100% of C.B-17-scid (SCID) mice, in contrast to the 10 to 25% of SCID mice spontaneously producing low levels of oligoclonal Ig. In this report we demonstrate that neonatal CD4+8- thymocytes were able to induce this response; the CD4+8+ and CD4-8+ subpopulations were totally inactive and CD4-8- T cells had only limited activity several weeks after transfer. The stimulation of IgM production in SCID mice was detectable by 1 wk posttransfer of CD4+8- thymocytes or splenic T cells, and could be achieved with as few as 300 cells. The ability of neonatal CD4+8- thymocytes to induce Ig diminished gradually to insignificant levels at 3 wk postbirth; this loss of function was not associated with differential survival of neonatal T cells. Neonatal CD4+8- thymocytes from C.B-17 and other H-2d strains rescued Ig production, whereas cells from H-2b, H-2a, and H-2k strains were much less effective. These results suggest that a CD4+8- subpopulation found in both neonatal thymus and peripheral lymphoid tissues is able to induce the expansion or differentiation of the small numbers of functional B lymphocytes in SCID mice, and that the inducing T cell disappears shortly after birth, perhaps during the acquisition of self-tolerance.  相似文献   

10.
11.
T cell diversity was once thought to depend on the interaction of T cell precursors with thymic epithelial cells. Recent evidence suggests, however, that diversity might arise through the interaction of developing T cells with other cells, the identity of which is not known. In this study we show that T cell diversity is driven by B cells and Ig. The TCR V beta diversity of thymocytes in mice that lack B cells and Ig is reduced to 6 x 10(2) from wild-type values of 1.1 x 10(8); in mice with oligoclonal B cells, the TCR V beta diversity of thymocytes is 0.01% that in wild-type mice. Adoptive transfer of diverse B cells or administration of polyclonal Ig increases thymocyte diversity in mice that lack B cells 8- and 7-fold, respectively, whereas adoptive transfer of monoclonal B cells or monoclonal Ig does not. These findings reveal a heretofore unrecognized and vital function of B cells and Ig for generation of T cell diversity and suggest a potential approach to immune reconstitution.  相似文献   

12.
13.
The diversity of immunoglobulin (Ig) and T cell receptor (TCR) genes available to form the lymphocyte repertoire has the capacity to produce a broad array of both protective and harmful specificities. In type 1 diabetes (T1D), the presence of antibodies to insulin and other islet antigens predicts disease development in both mice and humans, and demonstrate that immune tolerance is lost early in the disease process. Anti-insulin T cells isolated from T1D-prone non-obese diabetic (NOD) mice use polymorphic TCRα chains, suggesting that the available T cell repertoire is altered in these autoimmune mice. To probe whether insulin-binding B cells also possess polymorphic V genes, Ig light chains were isolated and sequenced from NOD mice that harbor an Ig heavy chain transgene. Three insulin-binding Vκ genes were identified, all of which were polymorphic to the closest germline sequence matches present in the GenBank database. Additional analysis of over 300 light chain sequences from multiple sources, including germline DNA, shows that polymorphisms are spread throughout the entire NOD Igκ locus, as these polymorphic sequences represent 43 distinct Vκ genes which belong to 14 Vκ families. Database searches reveal that a majority of polymorphic Vκ genes identified in NOD are identical to Vκ genes isolated from SLE-prone NZBxNZW F1 or MRL strains of mice, suggesting that a shared Igκ haplotype may be present. Predicted amino acid changes preferentially occur in CDR, and thus could alter antigen recognition by the germline B cell repertoire of autoimmune versus non-autoimmune mouse strains.  相似文献   

14.
15.
16.
Mice homozygous for an autosomal recessive mutation for the scid gene exhibit a defect that specifically impairs lymphoid differentiation but not myelopoiesis. Such mice can be cured of their lymphoid deficiency by grafts with normal bone marrow, although full reconstitution of lymphoid function is seldom obtained. Long-term bone marrow cultures (LTBMC) are devoid of all mature B and pre-B cells but contain lymphoid stem cells. We therefore reconstituted scid mice with LTBMC cells to study the kinetics of B lymphocyte reconstitution in normal and irradiated (4 Gy) scid recipients and in irradiated (9.5 Gy) co-isogenic C.B-17 mice. Detectable colony-forming B cells rapidly increased in the spleen and bone marrow of irradiated C.B-17 and irradiated scid recipients, reaching normal levels between 4 and 6 wk post-grafting. Unirradiated scid recipients showed limited reconstitution in spleen and very poor reconstitution in bone marrow. Unirradiated scid recipients also had relatively few surface Ig+ cells in spleen or bone marrow, whereas both groups of irradiated recipients had normal numbers between 4 and 6 wk post-reconstitution. Normal levels of cytotoxic T cell activity by 8 wk after reconstitution were observed only in the irradiated C.B-17 and irradiated scid recipients. Analysis of mice reconstituted with cells from LTBMC indicates that these cultures contain lymphoid stem cells with significant proliferative and self-renewal potential, and that full reconstitution of lymphoid function requires prior irradiation of the scid recipient.  相似文献   

17.
Consistent with an ordered immunoglobulin (Ig) gene assembly process during precursor (pre-) B cell differentiation, we find that most Abelson murine leukemia virus (A-MuLV)-transformed pre-B cells derived from scid (severe combined immune deficient) mice actively form aberrant rearrangements of their Ig heavy chain locus but do not rearrange endogenous kappa light chain variable region gene segments. However, we have identified several scid A-MuLV transformants that transcribe the germline Ig kappa light chain constant region and actively rearrange the kappa variable region gene locus. In one case progression to the stage of kappa light chain gene rearrangement did not require expression of Ig mu heavy chains; furthermore, this progression could not be efficiently induced following expression of mu heavy chains from an introduced vector. As observed in pre-B cell lines from normal mice, attempted V kappa-to-J kappa rearrangements in scid transformants occur by inversion at least as frequently as by deletion. The inverted rearrangements result in retention of both products of the recombination event in the chromosome, thus allowing their examination. scid kappa coding sequence joins are aberrant and analogous in structure to previously described scid heavy chain coding joins. In contrast, the recognition signals that flank involved coding segments frequently are joined precisely back-to-back in normal fashion. The scid VDJ recombinase defect therefore does not significantly impair recognition of, site-specific cutting at, or juxtaposition and appropriate ligation of signal sequences. Our finding that the scid defect prevents formation of correct coding but not signal joins distinguishes these events mechanistically.  相似文献   

18.
19.
20.
Studies of Ig and TCR genes in transformed lymphocytes of scid mice have revealed aberrant DNA rearrangements. Here we present a more detailed analysis of the Igh gene recombination in nine scid pre-B cell lines transformed by Abelson murine leukemia virus. We found 85% of the rearranged Igh alleles to contain abnormal Dh-Jh deletions of varying size. All of these deletions encompassed Jh elements and extended into the Igh enhancer region, occasionally involving the switch (S) region of the C mu gene. Some of these rearrangements removed most of the Dh elements, but none appeared to extend to the Vh genes. DNA sequence analysis of the two abnormally rearranged Igh alleles in one pre-B cell line showed that no Dh or Jh coding sequences were retained at the recombination sites though heptamer-like (CACTGTG) recognition signal sequences were present in the absence of nonamer (GGTTTTTGT) recognition signal sequences. These results imply that a deregulated recombinase activity may be responsible for the abnormal Dh-Jh deletions and the absence of Vh-Dh joining in established lines of Abelson murine leukemia virus-transformed scid pre-B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号