首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of alpha-SNAP to the membrane proteins syntaxin, SNAP-25, and synaptobrevin leads to the recruitment of the N-ethylmaleimide-sensitive fusion protein (NSF). ATP hydrolysis by NSF has been suggested to drive conformational changes in one or more of these membrane proteins that are essential for regulated exocytosis. Functional evidence for a role of alpha-SNAP in exocytosis in adrenal chromaffin cells comes from the ability of this protein to stimulate Ca(2+)-dependent exocytosis in digitonin-permeabilized cells. Here we examine the effect of a series of deletion mutants of alpha-SNAP on exocytosis, and on the ability of alpha-SNAP to interact with NSF, to define essential domains involved in protein-protein interactions in exocytosis. Deletion of extreme N- or C-terminal regions of alpha-SNAP produced proteins unable to bind to syntaxin or to stimulate exocytosis, suggesting that these domains participate in essential interactions. Deletion of C-terminal residues abolished the ability of alpha-SNAP to bind NSF. In contrast, deletion of up to 120 N-terminal residues did not prevent the binding of NSF to immobilized alpha-SNAP and such mutants were also able to stimulate the ATPase activity of NSF. These results suggest that the C-terminus, but not the N-terminus, of alpha-SNAP is crucial for interactions with NSF. The involvement of the C-terminus of alpha-SNAP, which contains a predicted coiled-coil domain, in the binding of both syntaxin and NSF would place the latter two proteins in proximity in a ternary complex whereupon the energy derived from ATP hydrolysis by NSF could induce a conformational change in syntaxin required for exocytosis to proceed.  相似文献   

2.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

3.
Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of alpha-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of alpha-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of alpha-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of alpha-SNAP potently inhibits Ca(2+)-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an alpha-SNAP mutant defective in NSF activation is used. We conclude that alpha-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for alpha-SNAP in the SNARE cycle that drives exocytotic membrane fusion.  相似文献   

4.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

5.
Margittai M  Otto H  Jahn R 《FEBS letters》1999,446(1):40-44
The proteins synaptobrevin (VAMP), SNAP-25 and syntaxin 1 are essential for neuronal exocytosis. They assemble into a stable ternary complex which is thought to initiate membrane fusion. In vitro, the transmembrane domains of syntaxin and synaptobrevin are not required for association. Here we report a novel interaction between synaptobrevin and syntaxin that requires the presence of the transmembrane domains. When co-reconstituted into liposomes, the proteins form a stable binary complex that cannot be disassembled by NSF and that is resistant to denaturation by SDS. Cleavage of synaptobrevin with tetanus toxin does not affect the interaction. Furthermore, the complex is formed when a truncated version of syntaxin is used that contains only 12 additional amino acid residues outside the membrane anchor. We conclude that the interaction is mediated by the transmembrane domains.  相似文献   

6.
Tomosyn is a 130-kDa syntaxin-binding protein that contains a large N-terminal domain with WD40 repeats and a C-terminal domain homologous to R-SNAREs. Here we show that tomosyn forms genuine SNARE core complexes with the SNAREs syntaxin 1 and SNAP-25. In vitro studies with recombinant proteins revealed that complex formation proceeds from unstructured monomers to a stable four-helical bundle. The assembled complex displayed features typical for SNARE core complexes, including a profound hysteresis upon unfolding-refolding transitions. No stable complexes were formed between the SNARE motif of tomosyn and either syntaxin or SNAP-25 alone. Furthermore, both native tomosyn and its isolated C-terminal domain competed with synaptobrevin for binding to endogenous syntaxin and SNAP-25 on inside-out sheets of plasma membranes. Tomosyn-SNARE complexes were effectively disassembled by the ATPase N-ethylmaleimide-sensitive factor together with its cofactor alpha-SNAP. Moreover, the C-terminal domain of tomosyn was as effective as the cytoplasmic portion of synaptobrevin in inhibiting evoked exocytosis in a cell-free preparation derived from PC12 cells. Similarly, overexpression of tomosyn in PC12 cells resulted in a massive reduction of exocytosis, but the release parameters of individual exocytotic events remained unchanged. We conclude that tomosyn is a soluble SNARE that directly competes with synaptobrevin in the formation of SNARE complexes and thus may function in down-regulating exocytosis.  相似文献   

7.
The synaptic vesicle protein synaptobrevin (VAMP) has recently been implicated as one of the key proteins involved in exocytotic membrane fusion. It interacts with the synaptic membrane proteins syntaxin I and synaptosome-associated protein (SNAP)-25 to form a complex which precedes exocytosis [Söllner et al. (1993b) Cell, 75, 409-418]. Here we demonstrate that the majority of synaptobrevin is bound to the vesicle protein synaptophysin in detergent extracts. No syntaxin I was found in this complex when synaptophysin-specific antibodies were used for immunoprecipitation. Conversely, no synaptophysin was associated with the synaptobrevin-syntaxin I complex when syntaxin-specific antibodies were used for immunoprecipitation. Thus, the synaptobrevin pool bound to synaptophysin is not available for binding to syntaxin I and SNAP-25, and vice versa. Synaptobrevin-synaptophysin binding was also demonstrated by chemical cross-linking in isolated nerve terminals. Furthermore, recombinant synaptobrevin II efficiently bound synaptophysin and its isoform synaptoporin, but not the more distantly related synaptic vesicle protein p29. Recombinant synaptobrevin I bound with similar efficiency, whereas the non-neuronal isoform cellubrevin displayed a lower affinity towards synaptophysin. Treatment with high NaCl concentrations resulted in a dissociation of the synaptobrevin-synaptophysin complex. In addition, the interaction of synaptobrevin with synaptophysin was irreversibly abolished by low amounts of SDS, while the interaction with syntaxin I was enhanced. We conclude that synaptophysin selectively interacts with synaptobrevin in a complex which excludes the t-SNAP receptors syntaxin I and SNAP-25, suggesting a role for synaptophysin in the control of exocytosis.  相似文献   

8.
SNARE (soluble NSF acceptor protein receptor) proteins are thought to mediate membrane fusion by assembling into heterooligomeric complexes that connect the fusing membranes and initiate the fusion reaction. Here we used site-directed spin labeling to map conformational changes that occur upon homo- and heterooligomeric complex formation of neuronal SNARE proteins. We found that the soluble domains of synaptobrevin, SNAP-25, and syntaxin 1 are unstructured. At higher concentrations, the SNARE motif of syntaxin 1 forms homooligomeric helical bundles with at least some of the alpha-helices aligned in parallel. In the assembled SNARE complex, mapping of thirty side chain positions yielded spectra which are in good agreement with the recently published crystal structure. The loop region of SNAP-25 that connects the two SNARE motifs is largely unstructured. C-terminal truncation of synaptobrevin resulted in complexes that are completely folded N-terminal of the truncation but become unstructured at the C-terminal end. The binary complex of syntaxin and SNAP-25 consists of a parallel four helix-bundle with properties resembling that of the ternary complex.  相似文献   

9.
Clostridial neurotoxins inhibit neurotransmitter release by selective and specific intracellular proteolysis of synaptobrevin/VAMP, synaptosomal-associated protein of 25 kDa (SNAP-25) or syntaxin. Here we show that in binary reactions synaptobrevin binds weakly to both SNAP-25 and syntaxin, and SNAP-25 binds to syntaxin. In the presence of all three components, a dramatic increase in the interaction strengths occurs and a stable sodium dodecyl sulfate-resistant complex forms. Mapping of the interacting sequences reveals that complex formation correlates with the presence of predicted alpha-helical structures, suggesting that membrane fusion involves intermolecular interactions via coiled-coil structures. Most toxins only attack the free, and not the complexed, proteins, and proteolysis of the proteins by different clostridial neurotoxins has distinct inhibitory effects on the formation of synaptobrevin-syntaxin-SNAP-25 complexes. Our data suggest that synaptobrevin, syntaxin and SNAP-25 associate into a unique stable complex that functions in synaptic vesicle exocytosis.  相似文献   

10.
Tetanus toxin and botulinal toxins are potent inhibitors of neuronal exocytosis. Within the past five years the protein sequences of all eight neurotoxins have been determined, their mode of action as metalloproteases has been established, and their intraneuronal targets have been identified. The toxins act by selectively proteolysing the synaptic vesicle protein synaptobrevin (VAMP) or the presynaptic membrane proteins syntaxin (HPC-1) and SNAP-25. These three proteins form the core of a complex that mediates fusion of carrier vesicles to target membranes. Tetanus and botulinal neurotoxins could serve in the future as tools to study membrane trafficking events, or even higher brain functions such as behaviour and learning.  相似文献   

11.
nSec1 binds a closed conformation of syntaxin1A   总被引:15,自引:0,他引:15  
The Sec1 family of proteins is proposed to function in vesicle trafficking by forming complexes with target membrane SNAREs (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein [SNAP] receptors) of the syntaxin family. Here, we demonstrate, by using in vitro binding assays, nondenaturing gel electrophoresis, and specific neurotoxin treatment, that the interaction of syntaxin1A with the core SNARE components, SNAP-25 (synaptosome-associated protein of 25 kD) and VAMP2 (vesicle-associated membrane protein 2), precludes the interaction with nSec1 (also called Munc18 and rbSec1). Inversely, association of nSec1 and syntaxin1A prevents assembly of the ternary SNARE complex. Furthermore, using chemical cross-linking of rat brain membranes, we identified nSec1 complexes containing syntaxin1A, but not SNAP-25 or VAMP2. These results support the hypothesis that Sec1 proteins function as syntaxin chaperons during vesicle docking, priming, and membrane fusion.  相似文献   

12.
Assembly of the plasma membrane proteins syntaxin 1A and SNAP-25 with the vesicle protein synaptobrevin is a critical step in neuronal exocytosis. Syntaxin is anchored to the inner face of presynaptic plasma membrane via a single C-terminal membrane-spanning domain. Here we report that this transmembrane domain plays a critical role in a wide range of syntaxin protein-protein interactions. Truncations or deletions of the membrane-spanning domain reduce synaptotagmin, alpha/beta-SNAP, and synaptobrevin binding. In contrast, deletion of the transmembrane domain potentiates SNAP-25 and rbSec1A/nsec-1/munc18 binding. Normal partner protein binding activity of the isolated cytoplasmic domain could be "rescued" by fusion to the transmembrane segments of synaptobrevin and to a lesser extent, synaptotagmin. However, efficient rescue was not achieved by replacing deleted transmembrane segments with corresponding lengths of other hydrophobic amino acids. Mutations reported to diminish the dimerization of the transmembrane domain of syntaxin did not impair the interaction of full-length syntaxin with other proteins. Finally, we observed that membrane insertion and wild-type interactions with interacting proteins are not correlated. We conclude that the transmembrane domain, via a length-dependent and sequence-specific mechanism, affects the ability of the cytoplasmic domain to engage other proteins.  相似文献   

13.
Syntaxin 1 and synaptosome-associated protein of 25 kD (SNAP-25) are neuronal plasmalemma proteins that appear to be essential for exocytosis of synaptic vesicles (SVs). Both proteins form a complex with synaptobrevin, an intrinsic membrane protein of SVs. This binding is thought to be responsible for vesicle docking and apparently precedes membrane fusion. According to the current concept, syntaxin 1 and SNAP-25 are members of larger protein families, collectively designated as target-SNAP receptors (t-SNAREs), whose specific localization to subcellular membranes define where transport vesicles bind and fuse. Here we demonstrate that major pools of syntaxin 1 and SNAP-25 recycle with SVs. Both proteins cofractionate with SVs and clathrin-coated vesicles upon subcellular fractionation. Using recombinant proteins as standards for quantitation, we found that syntaxin 1 and SNAP-25 each comprise approximately 3% of the total protein in highly purified SVs. Thus, both proteins are significant components of SVs although less abundant than synaptobrevin (8.7% of the total protein). Immunoisolation of vesicles using synaptophysin and syntaxin specific antibodies revealed that most SVs contain syntaxin 1. The widespread distribution of both syntaxin 1 and SNAP-25 on SVs was further confirmed by immunogold electron microscopy. Botulinum neurotoxin C1, a toxin that blocks exocytosis by proteolyzing syntaxin 1, preferentially cleaves vesicular syntaxin 1. We conclude that t- SNAREs participate in SV recycling in what may be functionally distinct forms.  相似文献   

14.
Munc18–1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18–1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18–1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18–1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18–1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25–deficient mice are used. We conclude that Munc18–1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.  相似文献   

15.
A 20S complex composed of the cytosolic fusion proteins NSF and SNAP and the synaptosomal SNAP receptors (SNAREs) synaptobrevin, syntaxin and SNAP-25 is essential for synaptic vesicle exocytosis. Formation of this complex is thought to be regulated by synaptotagmin, the putative calcium sensor of neurotransmitter release. Here we have examined how different inhibitors of neurotransmitter release, e.g. clostridial neurotoxins and a synaptotagmin peptide, affect the properties of the 20S complex. Cleavage of synaptobrevin and SNAP-25 by the neurotoxic clostridial proteases tetanus toxin and botulinum toxin A had no effect on assembly and disassembly of the 20S complex; however, the stability of its SDS-resistant SNARE core was compromised. This SDS-resistant low energy conformation of the SNAREs constitutes the physiological target of NSF, as indicated by its ATP-dependent disassembly in the presence of SNAP and NSF. Synaptotagmin peptides caused inhibition of in vitro binding of this protein to the SNAREs, a result that is inconsistent with synaptotagmin's proposed role as a regulator of SNAP binding. Our data can be reconciled by the idea that NSF and SNAP generate synaptotagmin-containing intermediates in synaptic vesicle fusion, which catalyse neurotransmitter release.  相似文献   

16.
The SNARE proteins, syntaxin, SNAP-25, and synaptobrevin have long been known to provide the driving force for vesicle fusion in the process of regulated exocytosis. Of particular interest is the initial interaction between SNAP-25 and syntaxin to form the t-SNARE heterodimer, an acceptor for subsequent synaptobrevin engagement. In vitro studies have revealed at least two different dynamic conformations of t-SNARE heterodimer defined by the degree of association of the C-terminal SNARE motif of SNAP-25 with syntaxin. At the plasma membrane, these proteins are organized into dense clusters of 50–60 nm in diameter. More recently, the t-SNARE interaction within these clusters was investigated in live cells at the molecular level, estimating each cluster to contain 35–70 t-SNARE molecules. This work reported the presence of both partially and fully zippered t-SNARE complex at the plasma membrane in agreement with the earlier in vitro findings. It also revealed a spatial segregation into distinct clusters containing predominantly one conformation apparently patterned by the surrounding lipid environment. The reason for this dynamic t-SNARE complex in exocytosis is uncertain; however, it does take us one step closer to understand the complex sequence of events leading to vesicle fusion, emphasizing the role of both membrane proteins and lipids.  相似文献   

17.
The phenomenon of synaptic transmission is based on the processes of synaptic vesicle exo- and endocytosis carried out with complex protein-dependent mechanisms. The SNARE-complex forming proteins (synaptobrevin, syntaxin, SNAP-25), synaptotagmin, Munc13, Munc18, NSF, alpha-SNAP are involved in exocytosis, while the synaptic vesicle endocytosis is mediated by another protein (clathrin, AP-2, epsin, endophilin, amphiphysin, dynamin, synaptojanin, Hsc70). In recent years, data on critical role of various lipids in exo- and encocytosis are collected. Most interesting results are received about significance of the cholesterol, phosphoinositides, phosphatidic and polynonsaturated fat acids in the exo-endocytosis cycle. Participation of lipid rafts in synaptic vesicle recycling is discussed. In this article, the data of the last years, including the authors' own data about role of some lipids and lipid-modifying enzimes in processes of exo- and endocytosis are presented.  相似文献   

18.
Syntaxin/SNAP-25 interactions precede assembly of the ternary SNARE complex that is essential for neurotransmitter release. This binary complex has been difficult to characterize by bulk methods because of the prevalence of a 2:1 dead-end species. Here, using single-molecule fluorescence, we find the structure of the 1:1 syntaxin/SNAP-25 binary complex is variable, with states changing on the second timescale. One state corresponds to a parallel three-helix bundle, whereas other states show one of the SNAP-25 SNARE domains dissociated. Adding synaptobrevin suppresses the dissociated helix states. Remarkably, upon addition of complexin, Munc13, Munc18, or synaptotagmin, a similar effect is observed. Thus, the 1:1 binary complex is a dynamic acceptor for synaptobrevin binding, and accessory proteins stabilize this acceptor. In the cellular environment the binary complex is actively maintained in a configuration where it can rapidly interact with synaptobrevin, so formation is not likely a limiting step for neurotransmitter release.  相似文献   

19.
The essential membrane fusion apparatus in mammalian cells, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consists of four alpha-helices formed by three proteins: SNAP-25, syntaxin 1, and synaptobrevin 2. SNAP-25 contributes two helices to the complex and is targeted to the plasma membrane by palmitoylation of four cysteines in the linker region. It is alternatively spliced into two forms, SNAP-25a and SNAP-25b, differing by nine amino acids substitutions. When expressed in chromaffin cells from SNAP-25 null mice, the isoforms support different levels of secretion. Here, we investigated the basis of that different secretory phenotype. We found that two nonconservative substitutions in the N-terminal SNARE domain and not the different localization of one palmitoylated cysteine cause the functional difference between the isoforms. Biochemical and molecular dynamic simulation experiments revealed that the two substitutions do not regulate secretion by affecting the property of SNARE complex itself, but rather make the SNAP-25b-containing SNARE complex more available for the interaction with accessory factor(s).  相似文献   

20.
N-Ethylmaleimide (NEM)-sensitive factor (NSF) associates with soluble NSF attachment protein (SNAP), that binds to SNAP receptors (SNAREs) including syntaxin, SNAP25, and synaptobrevin. The complex of NSF/SNAP/SNAREs plays a critical role in the regulation of vesicular traffic. The present study investigated NEM-regulated α7 ACh receptor translocation. NSF associated with β-SNAP and the SNAREs syntaxin 1 and synaptobrevin 2 in the rat hippocampus. NSF also associated with the α7 ACh receptor subunit, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1 and GluA2, and the γ-aminobutyric acid A (GABAA) receptor γ2 subunit. NEM, an inhibitor of NSF, significantly dissociated the α7 ACh receptor subunit from a complex with NSF and increased cell surface localization of the receptor subunit, but such effect was not obtained with the GluA1, GluA2 or γ2 subunits. NEM, alternatively, dissociated synaptobrevin 2 from an assembly of NSF/β-SNAP/syntaxin 1/synaptobrevin 2. NEM significantly increased the rate of nicotine-triggered AMPA receptor-mediated miniature excitatory postsynaptic currents, without affecting the amplitude, in rat hippocampal slices. The results of the present study indicate that NEM releases the α7 ACh receptor subunit and synaptobrevin 2 from an assembly of α7 ACh receptor subunit/NSF/β-SNAP/syntaxin 1/synaptobrevin 2, thereby promoting delivery of the α7 ACh receptor subunit to presynaptic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号