首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
The degradation of misfolded and unassembled proteins by the endoplasmic reticulum (ER)-associated degradation (ERAD) has been shown to occur mainly through the ubiquitin-proteasome pathway after transport of the protein to the cytosol. Recent work has revealed a role for N-linked glycans in targeting aberrant glycoproteins to ERAD. To further characterize the molecular basis of substrate recognition and sorting during ERAD in mammalian cells, we expressed a mutant yeast carboxypeptidase Y (CPY*) in CHO cells. CPY* was retained in the ER in un-aggregated form, and degraded after a 45-min lag period. Degradation was predominantly by a proteasome-independent, non-lysosomal pathway. The inhibitor of ER mannosidase I, kifunensine, blocked the degradation by the alternate pathway but did not affect the proteasomal fraction of degradation. Upon inhibition of glucose trimming, the initial lag period was eliminated and degradation thus accelerated. Our results indicated that, although the proteasome is a major player in ERAD, alternative routes are present in mammalian cells and can play an important role in the disposal of both glycoproteins and non-glycoproteins.  相似文献   

3.
The human ether-a-go-go related gene (hERG) encodes the voltage-gated K(+) channel that underlies the rapidly activating delayed-rectifier current in cardiac myocytes. hERG is synthesized in the endoplasmic reticulum (ER) as an "immature" N-linked glycoprotein and is terminally glycosylated in the Golgi apparatus. Most hERG missense mutations linked to long QT syndrome type 2 (LQT2) reduce the terminal glycosylation and functional expression. We tested the hypothesis that a distinct pre-Golgi compartment negatively regulates the trafficking of some LQT2 mutations to the Golgi apparatus. We found that treating cells in nocodazole, a microtubule depolymerizing agent, altered the subcellular localization, functional expression, and glycosylation of the LQT2 mutation G601S-hERG differently from wild-type hERG (WT-hERG). G601S-hERG quickly redistributed to peripheral compartments that partially colocalized with KDEL (Lys-Asp-Glu-Leu) chaperones but not calnexin, Sec31, or the ER golgi intermediate compartment (ERGIC). Treating cells in E-4031, a drug that increases the functional expression of G601S-hERG, prevented the accumulation of G601S-hERG to the peripheral compartments and increased G601S-hERG colocalization with the ERGIC. Coexpressing the temperature-sensitive mutant G protein from vesicular stomatitis virus, a mutant N-linked glycoprotein that is retained in the ER, showed it was not restricted to the same peripheral compartments as G601S-hERG at nonpermissive temperatures. We conclude that the trafficking of G601S-hERG is negatively regulated by a microtubule-dependent compartment within the ER. Identifying mechanisms that prevent the sorting or promote the release of LQT2 channels from this compartment may represent a novel therapeutic strategy for LQT2.  相似文献   

4.
Zhang DY  Wang Y  Lau CP  Tse HF  Li GR 《Cellular signalling》2008,20(10):1815-1821
Human ether-à-go-go-related gene (hERG or Kv11.1) encodes the rapidly activated delayed rectifier K(+) current (I(Kr)) in the human heart. Potential regulation of hERG channel by protein tyrosine kinases (PTKs) is not understood. The present study was designed to investigate whether this channel is modulated by PTKs using whole-cell patch clamp technique, and immunoprecipitation and Western blot analysis in HEK 293 cells stably expressing hERG gene. We found that the broad-spectrum PTK inhibitor genistein (30 muM), the selective EGFR (epidermal growth factor receptor) kinase inhibitor AG556 (10 muM) and the Src-family kinase inhibitor PP2 (10 muM) remarkably inhibited hERG channel current (I(hERG)), and the effects were significantly countered by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (1 mM). Immunoprecipitation and Western blot analysis demonstrated that membrane protein tyrosine phosphorylation of hERG channels was reduced by genistein, AG556, and PP2. The reduction of hERG channel phosphorylation level by genistein, AG556 or PP2 was antagonized by orthovanadate. Single point mutation(s) of Y475A and/or Y611A dramatically attenuated the inhibitory effect of I(hERG) by PP2 and/or AG556. Our results demonstrate the novel information that I(hERG) is modulated not only by Src-family kinases, but also by EGFR kinases. Y475 and/or Y611 are likely the preferred phosphorylation sites. Regulation of hERG channels by PTKs modifies the channel activity and thus likely alters electrophysiological properties including action potential duration and cell excitability in human heart and neurons.  相似文献   

5.
Previously we showed that two antithrombin mutants were degraded through an endoplasmic reticulum (ER)-associated degradation (ERAD) pathway [F. Tokunaga et al., FEBS Lett. 412 (1997) 65]. Here, we examined the combined effects of inhibitors of glycosidases, protein synthesis, proteasome, and tyrosine phosphatase on ERAD of a Glu313-deleted (DeltaGlu) mutant of antithrombin. We found that kifunensine, an ER mannosidase I inhibitor, suppressed ERAD, indicating that specific mannose trimming plays a critical role. Cycloheximide and puromycin, inhibitors of protein synthesis, also suppressed ERAD, the effects being cancelled by pretreatment with castanospermine. In contrast, kifunensine suppressed ERAD even in castanospermine-treated cells, suggesting that suppression of ERAD does not always require the binding of lectin-like ER chaperones-like calnexin and/or calreticulin. These results indicate that, besides proteasome inhibitors, inhibitors of ER mannosidase I and protein synthesis suppress ERAD of the antithrombin deltaGlu mutant at different stages, and processing of N-linked oligosaccharides highly correlated with the efficiency of ERAD.  相似文献   

6.
Congenital long QT syndrome 2 (LQT2) is caused by loss-of-function mutations in the human ether-á-go-go-related gene (hERG) voltage-gated potassium (K(+)) channel. hERG channels have slow deactivation kinetics that are regulated by an N-terminal Per-Arnt-Sim (PAS) domain. Only a small percentage of hERG channels containing PAS domain LQT2 mutations (hERG PAS-LQT2) have been characterized in mammalian cells, so the functional effect of these mutations is unclear. We investigated 11 hERG PAS-LQT2 channels in HEK293 cells and report a diversity of functional defects. Most hERG PAS-LQT2 channels formed functional channels at the plasma membrane, as measured by whole cell patch clamp recordings and cell surface biotinylation. Mutations located on one face of the PAS domain (K28E, F29L, N33T, R56Q, and M124R) caused defective channel gating, including faster deactivation kinetics and less steady-state inactivation. Conversely, the other mutations caused no measurable differences in channel gating (G53R, H70R, and A78P) or no measurable currents (Y43C, C66G, and L86R). We used a genetically encoded hERG PAS domain (NPAS) to examine whether channel dysfunction could be corrected. We found that NPAS fully restored wild-type-like deactivation kinetics and steady-state inactivation to the hERG PAS-LQT2 channels. Additionally, NPAS rescued aberrant currents in hERG R56Q channels during a dynamic ramp voltage clamp. Thus, our results reveal a putative "gating face" in the PAS domain where mutations within this region form functional channels with altered gating properties, and we show that NPAS is a general means for rescuing aberrant gating in hERG LQT2 mutant channels and may be a potential biological therapeutic.  相似文献   

7.
A reduction in extracellular K(+) concentration ([K(+)](o)) causes cardiac arrhythmias and triggers internalization of the cardiac rapidly activating delayed rectifier potassium channel (I(Kr)) encoded by the human ether-a-go-go-related gene (hERG). We investigated the role of ubiquitin (Ub) in endocytic degradation of hERG channels stably expressed in HEK cells. Under low K(+) conditions, UbKO, a lysine-less mutant Ub that only supports monoubiquitination, preferentially interacted and selectively enhanced degradation of the mature hERG channels. Overexpression of Vps24 protein, also known as charged multivesicular body protein 3, significantly accelerated degradation of mature hERG channels, whereas knockdown of Vps24 impeded this process. Moreover, the lysosomal inhibitor bafilomycin A1 inhibited degradation of the internalized mature hERG channels. Thus, monoubiquitination directs mature hERG channels to degrade through the multivesicular body/lysosome pathway. Interestingly, the protease inhibitor lactacystin inhibited the low K(+)-induced hERG endocytosis and concomitantly led to an accumulation of monoubiquitinated mature hERG channels, suggesting that deubiquitination is also required for the endocytic degradation. Consistently, overexpression of the endosomal deubiquitinating enzyme signal transducing adaptor molecule-binding protein significantly accelerated whereas knockdown of endogenous signal transducing adaptor molecule-binding protein impeded degradation of the mature hERG channels under low K(+) conditions. Thus, monoubiquitin dynamically mediates endocytic degradation of mature hERG channels under low K(+) conditions.  相似文献   

8.
9.
Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytoplasm and degraded by the proteasome. Processing intermediates of N-linked oligosaccharides on incompletely folded glycoproteins have an important role in their folding/refolding, and also in their targeting to proteolytic degradation. In Saccharomyces cerevisiae, we have identified a gene coding for a non-essential protein that is homologous to mannosidase I (HTM1) and that is required for degradation of glycoproteins. Deletion of the HTM1 gene does not affect oligosaccharide trimming. However, deletion of HTM1 does reduce the rate of degradation of the mutant glycoproteins such as carboxypeptidase Y, ABC-transporter Pdr5-26p and oligosaccharyltransferase subunit Stt3-7p, but not of mutant Sec61-2p, a non-glycoprotein. Our results indicate that although Htm1p is not involved in processing of N-linked oligosaccharides, it is required for their proteolytic degradation. We propose that this mannosidase homolog is a lectin that recognizes Man8GlcNAc2 oligosaccharides that serve as signals in the degradation pathway.  相似文献   

10.
Proteasome degradation of endoplasmic reticulum (ER)-misfolded proteins requires retrograde transport from ER to the cytosol. To date, it is not clear whether this event constitutes the exclusive ER degradation process for non-native membrane proteins. Here we describe the role of GTP in the degradation of DeltaF508-CFTR and the alpha subunit of the T-cell receptor (TCRalpha), representative misfolded ER membrane proteins. Selective intracellular GTP depletion extended the DeltaF508-CFTR half-life sixfold, whereas ATP depletion accelerated its turnover and inhibited only 80% of the proteasome activity that was not affected by GTP depletion. AlF(4)(-), a well-known inhibitor of heterotrimeric G proteins, but not of AlF(3), delayed the mutant CFTR turnover in vivo, in semi-intact cells and in ER-enriched microsomes, without affecting ER to Golgi cargo transport. DeltaF508-CFTR degradation was also inhibited by alkaline stripping of ER-associated membrane proteins. We propose that at the ER, GTP may participate in the disposal of misfolded membrane proteins through activation of heterotrimeric G proteins.  相似文献   

11.
Many kinds of misfolded secretory proteins are known to be degraded in the endoplasmic reticulum (ER). Dislocation of misfolded proteins from the ER to the cytosol and subsequent degradation by the proteasome have been demonstrated. Using the yeast Saccharomyces cerevisiae, we have been studying the secretion of a heterologous protein, Rhizopus niveus aspartic proteinase-I (RNAP-I). Previously, we found that the pro sequence of RNAP-I is important for the folding and secretion, and that Deltapro, a mutated derivative of RNAP-I in which the entire region of the pro sequence is deleted, forms gross aggregates in the yeast ER. In this study, we show that the degradation of Deltapro occurs independently of the proteasome. Its degradation was not inhibited either by a potent proteasome inhibitor or in a proteasome mutant. We also show that neither the export from the ER nor the vacuolar proteinase is required for the degradation of Deltapro. These results raise the possibility that the Deltapro aggregates are degraded in the ER lumen. We have isolated a yeast mutant in which the degradation of Deltapro is delayed. We show that the mutated gene is IRA2, which encodes a GTPase-activating protein for Ras. Because Ira2 protein is a negative regulator of the Ras-cAMP pathway, this result suggests that hyperactivation of the Ras-cAMP pathway inhibits the degradation of Deltapro. Consistently, down-regulation of the Ras-cAMP pathway in the ira2 mutant suppressed the defect of the degradation of Deltapro. Thus, the Ras-cAMP signal transduction pathway seems to control the proteasome-independent degradation of the ER misfolded protein aggregates.  相似文献   

12.
The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype.  相似文献   

13.
14.
The effect of glucosidase and mannosidase inhibitors on the ER-associated degradation of tyrosinase was assessed in transiently transfected COS-7 cells. We found that the glucosidase inhibitors castanospermine and deoxynojirimycin had very little effect on tyrosinase degradation, whereas the mannosidase inhibitors deoxymannojirimycin and kifunensine significantly delayed the rate of tyrosinase degradation as measured by pulse-chase analysis. In addition, we show that tyrosinase degradation is sensitive to the proteasome inhibitor lactacystin and that tyrosinase associates with endogenous calnexin in COS-7 cells. Our data support a model of tyrosinase degradation that involves mannose trimming, calnexin association, and the retrograde transport of tyrosinase from the ER to the cytosol for proteasomal degradation. The pathways of tyrosinase degradation have important ramifications with regard to the exact types of antigenic epitopes that are presented to the immune system.  相似文献   

15.
16.
To examine the role of early carbohydrate recognition/trimming reactions in targeting endoplasmic reticulum (ER)-retained, misfolded glycoproteins for ER-associated degradation (ERAD), we have stably expressed the cog thyroglobulin (Tg) mutant cDNA in Chinese hamster ovary cells. We found that inhibitors of ER mannosidase I (but not other glycosidases) acutely suppressed Cog Tg degradation and also perturbed the ERAD process for Tg reduced with dithiothreitol as well as for gamma-carboxylation-deficient protein C expressed in warfarin-treated baby hamster kidney cells. Kifunensine inhibition of ER mannosidase I also suppressed ERAD in castanospermine-treated cells; thus, suppression of ERAD does not require lectin-like binding of ER chaperones calnexin and calreticulin to monoglucosylated oligosaccharides. Notably, the undegraded protein fraction remained completely microsome-associated. In pulse-chase studies, kifunensine-sensitive degradation was still inhibitable even 1 h after Tg synthesis. Intriguingly, chronic treatment with kifunensine caused a 3-fold accumulation of Cog Tg in Chinese hamster ovary cells and did not lead to significant induction of the ER unfolded protein response. We hypothesize that, in a manner not requiring lectin-like activity of calnexin/calreticulin, the recognition or processing of a specific branched N-linked mannose structure enhances the efficiency of glycoprotein retrotranslocation from the ER lumen.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号