首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human immunodeficiency virus type 1 (HIV-1) uses a variety of chemokine receptors as coreceptors for virus entry, and the ability of the virus to be neutralized by antibody may depend on which coreceptors are used. In particular, laboratory-adapted variants of the virus that use CXCR4 as a coreceptor are highly sensitive to neutralization by sera from HIV-1-infected individuals, whereas primary isolates that use CCR5 instead of, or in addition to, CXCR4 are neutralized poorly. To determine whether this dichotomy in neutralization sensitivity could be explained by differential coreceptor usage, virus neutralization by serum samples from HIV-1-infected individuals was assessed in MT-2 cells, which express CXCR4 but not CCR5, and in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), where multiple coreceptors including CXCR4 and CCR5 are available for use. Our results showed that three of four primary isolates with a syncytium-inducing (SI) phenotype and that use CXCR4 and CCR5 were neutralized poorly in both MT-2 cells and PBMC. The fourth isolate, designated 89.6, was more sensitive to neutralization in MT-2 cells than in PBMC. We showed that the neutralization of 89.6 in PBMC was not improved when CCR5 was blocked by having RANTES, MIP-1α, and MIP-1β in the culture medium, indicating that CCR5 usage was not responsible for the decreased sensitivity to neutralization in PBMC. Consistent with this finding, a laboratory-adapted strain of virus (IIIB) was significantly more sensitive to neutralization in CCR5-deficient PBMC (homozygous Δ32-CCR5 allele) than were two of two SI primary isolates tested. The results indicate that the ability of HIV-1 to be neutralized by sera from infected individuals depends on factors other than coreceptor usage.Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS, utilizes the HLA class II receptor, CD4, as its primary receptor to gain entry into cells (17, 30). Entry is initiated by a high-affinity interaction between CD4 and the surface gp120 of the virus (32). Subsequent to this interaction, conformational changes that permit fusion of the viral membrane with cellular membranes occur within the viral transmembrane gp41 (9, 58, 59). In addition to CD4, one or more recently described viral coreceptors are needed for fusion to take place. These coreceptors belong to a family of seven-transmembrane G-protein-coupled proteins and include the CXC chemokine receptor CXCR4 (3, 4, 24, 44), the CC chemokine receptors CCR5 (1, 12, 13, 18, 21, 23, 45) and, less commonly, CCR3 and CCR2b (12, 21), and two related orphan receptors termed BONZO/STRL33 and BOB (19, 34). Coreceptor usage by HIV-1 can be blocked by naturally occurring ligands, including SDF-1 for CXCR4 (4, 44), RANTES, MIP-1α, and MIP-1β in the case of CCR5 (13, 45), and eotaxin for CCR3 (12).The selective cellular tropisms of different strains of HIV-1 may be determined in part by coreceptor usage. For example, all culturable HIV-1 variants replicate initially in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), but only a minor fraction are able to infect established CD4+ T-cell lines (43). This differential tropism is explained by the expression of CXCR4 together with CCR5 and other CC chemokine coreceptors on PBMC and the lack of expression of CCR5 on most T-cell lines (5, 10, 19, 35, 39, 50, 53). Indeed, low-passage field strains (i.e., primary isolates) of HIV-1 that fail to replicate in T-cell lines use CCR5 as their major coreceptor and are unable to use CXCR4 (1, 12, 18, 21, 23, 28). Because these isolates rarely produce syncytia in PBMC and fail to infect MT-2 cells, they are often classified as having a non-syncytium-inducing (NSI) phenotype. Primary isolates with a syncytium-inducing (SI) phenotype are able to use CXCR4 alone or, more usually, in addition to CCR5 (16, 20, 51). HIV-1 variants that have been passaged multiple times in CD4+ T-cell lines, and therefore considered to be laboratory adapted, exhibit a pattern of coreceptor usage that resembles that of SI primary isolates. Most studies have shown that the laboratory-adapted strain IIIB uses CXCR4 alone (3, 13, 20, 24, 51) and that MN and SF-2 use CXCR4 primarily and CCR5 to a lesser degree (11, 13). Sequences within the V3 loop of gp120 have been shown to be important, either directly or indirectly, for the interaction of HIV-1 with both CXCR4 (52) and CCR5 (12, 14, 54, 60). This region of gp120 contains multiple determinants of cellular tropism (43) and is a major target for neutralizing antibodies to laboratory-adapted HIV-1 but not to primary isolates (29, 46, 57).It has been known for some time that the ability of sera from HIV-1-infected individuals to neutralize laboratory-adapted strains of HIV-1 does not predict their ability to neutralize primary isolates in vitro (7). In general, the former viruses are highly sensitive to neutralization whereas the latter viruses are neutralized poorly by antibodies induced in response to HIV-1 infection (7, 43). Importantly, neutralizing antibodies generated by candidate HIV-1 subunit vaccines have been highly specific for laboratory-adapted viruses (26, 37, 38). In principle, the dichotomy in neutralization sensitivity between these two categories of virus could be related to coreceptor usage. To test this, we investigated whether the use of CXCR4 in the absence of CCR5 would render SI primary isolates highly sensitive to neutralization in vitro by sera from HIV-1-infected individuals. Two similar studies using human monoclonal antibodies and soluble CD4 have been reported (31a, 55).  相似文献   

3.
4.
5.
6.
Non-subtype B viruses cause the vast majority of new human immunodeficiency virus type 1 (HIV-1) infections worldwide and are thus the major focus of international vaccine efforts. Although their geographic dissemination is carefully monitored, their immunogenic and biological properties remain largely unknown, in part because well-characterized virological reference reagents are lacking. In particular, full-length clones and sequences are rare, since subtype classification is frequently based on small PCR-derived viral fragments. There are only five proviral clones available for viruses other than subtype B, and these represent only 3 of the 10 proposed (group M) sequence subtypes. This lack of reference sequences also confounds the identification and analysis of mosaic (recombinant) genomes, which appear to be arising with increasing frequency in areas where multiple sequence subtypes cocirculate. To generate a more representative panel of non-subtype B reference reagents, we have cloned (by long PCR or lambda phage techniques) and sequenced 10 near-full-length HIV-1 genomes (lacking less than 80 bp of long terminal repeat sequences) from primary isolates collected at major epicenters of the global AIDS pandemic. Detailed phylogenetic analyses identified six that represented nonrecombinant members of HIV-1 subtypes A (92UG037.1), C (92BR025.8), D (84ZR085.1 and 94UG114.1), F (93BR020.1), and H (90CF056.1), the last two comprising the first full-length examples of these subtypes. Four others were found to be complex mosaics of subtypes A and C (92RW009.6), A and G (92NG083.2 and 92NG003.1), and B and F (93BR029.4), again emphasizing the impact of intersubtype recombination on global HIV-1 diversification. Although a number of clones had frameshift mutations or translational stop codons in major open reading frames, all the genomes contained a complete set of genes and three had intact genomic organizations without inactivating mutations. Reconstruction of one of these (94UG114.1) yielded replication-competent virus that grew to high titers in normal donor peripheral blood mononuclear cell cultures. This panel of non-subtype B reference genomes should prove valuable for structure-function studies of genetically diverse viral gene products, the generation of subtype-specific immunological reagents, and the production of DNA- and protein-based subunit vaccines directed against a broader spectrum of viruses.One critical question facing current AIDS vaccine development efforts is to what extent human immunodeficiency virus type 1 (HIV-1) genetic variation has to be considered in the design of candidate vaccines (11, 21, 41, 72). Phylogenetic analyses of globally circulating viral strains have identified two distinct groups of HIV-1 (M and O) (33, 45, 61, 62), and 10 sequence subtypes (A to J) have been proposed within the major group (M) (29, 30, 45, 72). Sequence variation among viruses belonging to these different lineages is extensive, with envelope amino acid sequence variation ranging from 24% between different subtypes to 47% between the two different groups. Given this extent of diversity, the question has been raised whether immunogens based on a single virus strain can be expected to elicit immune responses effective against a broad spectrum of viruses or whether vaccine preparations should include mixtures of genetically divergent antigens and/or be tailored toward locally circulating strains (11, 21, 41, 72). This is of particular concern in developing countries, where multiple subtypes of HIV-1 are known to cocirculate and where subtype B viruses (which have been the source of most current candidate vaccine preparations [10, 21]) are rare or nonexistent (5, 24, 40, 72).Although the extent of global HIV-1 variation is well defined, little is known about the biological consequences of this genetic diversity and its impact on cellular and humoral immune responses in the infected host. In particular, it remains unknown whether subtype-specific differences in virus biology exist that have to be considered for vaccine design. Thus far, such differences have not been identified. For example, several studies have shown that there is no correlation between HIV-1 genetic subtypes and neutralization serotypes (38, 42, 46, 68). Some viruses are readily neutralized, while most are relatively neutralization resistant (42). Although the reasons for these different susceptibilities remain unknown, it is clear that neutralization is not a function of the viral genotype (38, 42, 46, 68). Similarly, recent studies have identified vigorous cross-clade cytotoxic T-lymphocyte (CTL) reactivities in individuals infected with viruses from several different clades (3, 6), as well as in recipients of a clade B vaccine (15). These results are very encouraging, since they suggest that CTL cross-recognition among HIV-1 clades is much more prevalent than previously anticipated and that immunogens based on a limited number of variants may be able to elicit a broad CTL response (6). Nevertheless, it would be premature to conclude that HIV-1 variation poses no problem for AIDS vaccine design. Only a comprehensive analysis of genetically defined representatives of the various groups and subtypes will allow us to judge whether certain variants differ in fundamental viral properties and whether such differences will have to be incorporated into vaccine strategies. Obviously, such studies require well-characterized reference reagents, in particular full-length and replication-competent molecular clones that can be used for functional and biological studies.Full-length reference sequences representing the various subtypes are also urgently needed for phylogenetic comparisons. Recent analyses of subgenomic (23, 52, 54, 58) as well as full-length (7, 18, 53, 60) HIV-1 sequences identified a surprising number of HIV-1 strains which clustered in different subtypes in different parts of their genome. All of these originated from geographic regions where multiple subtypes cocirculated and are the results of coinfections with highly divergent viruses (52, 60, 62). Detailed phylogenetic characterization revealed that most of them have a complex genome structure with multiple points of crossover (7, 18, 53, 60). Some recombinants, like the “subtype E” viruses, which are in fact A/E recombinants (7, 18), have a widespread geographic dissemination and are responsible for much of the Asian HIV-1 epidemic (69, 70). In other areas, recombinants appear to be generated with increasing frequencies since many randomly chosen isolates exhibit evidence of mosaicism (4, 8, 31, 66, 71). Since recombination provides the opportunity for evolutionary leaps with genetic consequences that are far greater than those of the steady accumulation of individual mutations, the impact of recombination on viral properties must be monitored. We therefore need full-length nonrecombinant reference sequences for all major HIV-1 groups and subtypes before we can map and characterize the extent of intersubtype recombination.The number of molecular reagents for non-subtype B viruses is very limited. There are currently only five full-length, nonrecombinant molecular clones available for viruses other than subtype B (45), and these represent only three of the proposed (group M) subtypes (A, C, and D). Moreover, only three clones (all derived from subtype D viruses) are replication competent and thus useful for studies requiring functional gene products (45, 48, 65). Given the unknown impact of genetic variation on correlates of immune protection, subtype-specific reagents are critically needed for phylogenetic, immunological, and biological studies. In this paper, we report the cloning (by long PCR and lambda techniques) of 10 near-full-length HIV-1 genomes from isolates previously classified as non-subtype B viruses. Detailed phylogenetic analysis showed that six comprise nonmosaic representatives of five major subtypes, including two for which full-length representatives have not been reported. Four others were identified as complex intersubtype recombinants, again emphasizing the prevalence of hybrid genomes among globally circulating HIV-1 strains. We also describe a strategy for the biological evaluation of long-PCR-derived genomes and report the generation of a replication-competent provirus by this approach. The effect of these reagents on vaccine development is discussed.  相似文献   

7.
8.
Most individuals infected with human immunodeficiency virus type 1 (HIV-1) initially harbor macrophage-tropic, non-syncytium-inducing (M-tropic, NSI) viruses that may evolve into T-cell-tropic, syncytium-inducing viruses (T-tropic, SI) after several years. The reasons for the more efficient transmission of M-tropic, NSI viruses and the slow evolution of T-tropic, SI viruses remain unclear, although they may be linked to expression of appropriate chemokine coreceptors for virus entry. We have examined plasma viral RNA levels and the extent of CD4+ T-cell depletion in SCID mice reconstituted with human peripheral blood leukocytes following infection with M-tropic, dual-tropic, or T-tropic HIV-1 isolates. The cell tropism was found to determine the course of viremia, with M-tropic viruses producing sustained high viral RNA levels and sparing some CD4+ T cells, dual-tropic viruses producing a transient and lower viral RNA spike and extremely rapid depletion of CD4+ T cells, and T-tropic viruses causing similarly lower viral RNA levels and rapid-intermediate rates of CD4+ T-cell depletion. A single amino acid change in the V3 region of gp120 was sufficient to cause one isolate to switch from M-tropic to dual-tropic and acquire the ability to rapidly deplete all CD4+ T cells.The envelope gene of human immunodeficiency virus type 1 (HIV-1) determines the cell tropism of the virus (11, 32, 47, 62), the use of chemokine receptors as cofactors for viral entry (4, 17), and the ability of the virus to induce syncytia in infected cells (55, 60). Cell tropism is closely linked to but probably not exclusively determined by the ability of different HIV-1 envelopes to bind CD4 and the CC or the CXC chemokine receptors and initiate viral fusion with the target cell. Macrophage-tropic (M-tropic) viruses infect primary cultures of macrophages and CD4+ T cells and use CCR5 as the preferred coreceptor (2, 5, 15, 23, 26, 31). T-cell-tropic (T-tropic) viruses can infect primary cultures of CD4+ T cells and established T-cell lines, but not primary macrophages. T-tropic viruses use CXCR4 as a coreceptor for viral entry (27). Dual-tropic viruses have both of these properties and can use either CCR5 or CXCR4 (and infrequently other chemokine receptors [25]) for viral entry (24, 37, 57). M-tropic viruses are most frequently transmitted during primary infection of humans and persist throughout the duration of the infection (63). Many, but not all, infected individuals show an evolution of virus cell tropism from M-tropic to dual-tropic and finally to T-tropic with increasing time after infection (21, 38, 57). Increases in replicative capacity of viruses from patients with long-term infection have also been noted (22), and the switch to the syncytium-inducing (SI) phenotype in T-tropic or dual-tropic isolates is associated with more rapid disease progression (10, 20, 60). Primary infection with dual-tropic or T-tropic HIV, although infrequent, often leads to rapid disease progression (16, 51). The viral and host factors that determine the higher transmission rate of M-tropic HIV-1 and the slow evolution of dual- or T-tropic variants remain to be elucidated (4).These observations suggest that infection with T-tropic, SI virus isolates in animal model systems with SCID mice grafted with human lymphoid cells or tissue should lead to a rapid course of disease (1, 8, 4446). While some studies in SCID mice grafted with fetal thymus and liver are in agreement with this concept (33, 34), our previous studies with the human peripheral blood leukocyte-SCID (hu-PBL-SCID) mouse model have shown that infection with M-tropic isolates (e.g., SF162) causes more rapid CD4+ T-cell depletion than infection with T-tropic, SI isolates (e.g., SF33), despite similar proviral copy numbers, and that this property mapped to envelope (28, 41, 43). However, the dual-tropic 89.6 isolate (19) caused extremely rapid CD4+ T-cell depletion in infected hu-PBL-SCID mice that was associated with an early and transient increase in HIV-1 plasma viral RNA (29). The relationship between cell tropism of the virus isolate and the pattern of disease in hu-PBL-SCID mice is thus uncertain. We have extended these studies by determining the kinetics of HIV-1 RNA levels in serial plasma samples of hu-PBL-SCID mice infected with primary patient isolates or laboratory stocks that differ in cell tropism and SI properties. The results showed significant differences in the kinetics of HIV-1 replication and CD4+ T-cell depletion that are determined by the cell tropism of the virus isolate.  相似文献   

9.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

10.
Human immunodeficiency virus type 1 (HIV-1) may be studied by molecular or immunological approaches. Most analyses have been performed by genetic comparison of isolates and have led to the definition of clades or subtypes within the major (M) group of HIV-1. Five subtypes (A to E) were initially identified by comparison of genomic sequences. Four new subtypes (F to I) were identified more recently. Amino acid differences in the immunogenic V3 loop between isolates have also been studied, leading to a phenetic classification of at least 14 clusters (1 to 14) of sequences (B. T. M. Korber, K. McInnes, R. F. Smith, and G. Myers, J. Virol. 68:6730–6744, 1994). In this study, we compared the antigenicity of the V3 consensus sequences defined by phylogenetic analysis to the antigenicity of those defined by phenetic analysis. We used a recently developed subtype-specific enzyme immunoassay (SSEIA) that uses the principle of blocking with an excess of peptide in the liquid phase. Two SSEIAs were performed, the first with five V3 sequences defined by phylogenetic analysis and the second with 14 V3 sequences defined by phenetic analysis. A total of 168 HIV-1 sera taken from seropositive individuals from seven different countries or regions were studied. Experimental and statistical data, including correlation matrix and cluster analyses, demonstrated associations between the genetic subtypes and phenetically associated groups. Most of these were predicted by Korber et al. (J. Virol. 68:6730–6744, 1994) by theoretical analysis. We also found that V3 sequences can be grouped into between three and five antigenically unrelated categories. Residues that may be responsible for major antigenic differences were identified at the apex of the V3 loop, within the octapeptide xIGPGxxx, where x represents the critical positions. Our study provides evidence that there is a limited number of V3 serotypes which could be easily monitored by serological assays to study the diversity and dynamics of HIV-1 strains.The diversity of human immunodeficiency virus type 1 (HIV-1) is a major problem in the development of an effective vaccine against AIDS. Many HIV-1 sequences are now available, and phylogenetic analysis resulting in a continuously developing classification into subtypes or clades is possible (45). HIV-1 isolates are classified into the M group (for major) or O group (for outlier). The O group contains only a few variants, all from a limited area of Africa (19, 27, 50). The M group includes variants responsible for the present AIDS pandemic. It contains at least five subtypes (A to E), to which have been added more recently four other subtypes (F to I) (23, 28, 34, 36, 37). Subtypes A, C, D, G, and H are common in Africa (21, 35, 37, 38). Subtype B is the most common in America and Europe (24, 26, 51). Subtype E occurs mainly in Asia (25, 30, 41), and subtype F has been detected in Brazil and Romania (3, 28, 34). These distributions are not restrictive. Subtype C is also present in Asia (India and China), and subtype G is also present in Russia (7, 12, 29). The African subtypes (A, C, and D) and the Asian subtype (E) have also been identified in North America and in European countries (9, 13, 14, 32, 48). All the subtypes are present in Africa, including B (detected in West Africa), E (Central African Republic), and F (Cameroon) (1, 35, 38). Analysis of the genetic diversity of HIV-1 is becoming more difficult due to the increasing frequency of coinfections and recombinations (15, 20, 44).Phylogenetic trees have been generated with gag, env, or tat nucleotide sequences. Shorter DNA sequences encoding the functionally important V3 region of the envelope protein are most frequently used to provide reliable subtype designations (37). The diversity of the immunogenic V3 loop has also been studied by comparing the amino acids of different isolates, leading to a phenetic classification of at least 14 clusters of sequences, each one characterized by a consensus sequence based on the most common amino acid in a given position (22).The heterogeneity of HIV-1 strains is studied mostly by molecular characterization of genomic sequences. This involves sequencing fragments amplified by the PCR or the use of the heteroduplex mobility assay (10, 11). However, although these methods allow direct subtype classification, they are time-consuming and expensive and require highly trained workers. Serotyping of HIV-1 by antibody (Ab) binding to the V3 region has been suggested as an alternative approach (8, 40, 49, 51). Such an approach may make it possible to identify subtypes based on antigenic rather than genetic properties. This immunological information about antigenic diversity might be of value in vaccine development. We recently developed a subtype-specific enzyme immunoassay (SSEIA) which gave results consistent with those of genotyping (4, 48). This assay used V3 consensus sequences defined by genetic classification, so we wanted to compare the antigenicity of these V3 consensus sequences to the antigenicity of those defined by phenetic analysis. The phenetic clustering of V3 loop amino acid sequences is not always consistent with phylogenetic analysis. Our results suggested that a limited number of serotypes may exist and identified amino acids at the tip of the V3 loop that may be responsible for serological discrimination.  相似文献   

11.
We have investigated whether the identity of the coreceptor (CCR5, CXCR4, or both) used by primary human immunodeficiency virus type 1 (HIV-1) isolates to enter CD4+ cells influences the sensitivity of these isolates to neutralization by monoclonal antibodies and CD4-based agents. Coreceptor usage was not an important determinant of neutralization titer for primary isolates in peripheral blood mononuclear cells. We also studied whether dualtropic primary isolates (able to use both CCR5 and CXCR4) were differentially sensitive to neutralization by the same antibodies when entering U87MG-CD4 cells stably expressing either CCR5 or CXCR4. Again, we found that the coreceptor used by a virus did not greatly affect its neutralization sensitivity. Similar results were obtained for CCR5- or CXCR4-expressing HOS cell lines engineered to express green fluorescent protein as a reporter of HIV-1 entry. Neutralizing antibodies are therefore unlikely to be the major selection pressure which drives the phenotypic evolution (change in coreceptor usage) of HIV-1 that can occur in vivo. In addition, the increase in neutralization sensitivity found when primary isolates adapt to growth in transformed cell lines in vitro has little to do with alterations in coreceptor usage.Human immunodeficiency virus type 1 (HIV-1) enters CD4+ T cells via an interaction with CD4 and coreceptor molecules, the most important of which yet identified are the chemokine receptors CXCR4 and CCR5 (4, 12, 23, 26, 28, 32). CXCR4 is used by T-cell line-tropic (T-tropic) primary isolates or T-cell line-adapted (TCLA) lab strains, whereas CCR5 is used by primary isolates of the macrophage-tropic (M-tropic) phenotype (4, 12, 23, 26, 28, 32). Most T-tropic isolates and some TCLA strains are actually dualtropic in that they can use both CXCR4 and CCR5 (and often other coreceptors such as CCR3, Bonzo/STRL33, and BOB/gpr15), at least in coreceptor-transfected cells (18, 24, 30, 54, 89). The M-tropic and T-tropic/dualtropic nomenclature has often been used interchangeably with the terms “non-syncytium-inducing” (NSI) and “syncytium-inducing” (SI), although it is semantically imprecise to do so.M-tropic viruses are those most commonly transmitted sexually (3, 33, 87, 106) and from mother to infant (2, 72, 81). If T-tropic strains are transmitted, or when they emerge, this is associated with a more rapid course of disease in both adults (17, 37, 46, 51, 52, 76, 78, 82, 92, 101) and children (6, 45, 84, 90). However, T-tropic viruses emerge in only about 40% of infected people, usually only several years after infection (76, 78). A well-documented, albeit anecdotal, study found that when a T-tropic strain was transmitted by direct transfer of blood, its replication was rapidly suppressed: the T-tropic virus was eliminated from the body, and M-tropic strains predominated (20). These results suggest that there is a counterselection pressure against the emergence of T-tropic strains during the early stages of HIV-1 infection in most people. But what is this pressure?Since the M-tropic and T-tropic phenotypes are properties mediated by the envelope glycoproteins whose function is to associate with CD4 and the coreceptors, a selection pressure differentially exerted on M- and T-tropic viruses could, in principle, act at the level of virus entry. In other words, neutralizing antibodies to the envelope glycoproteins, or the chemokine ligands of the coreceptors, could theoretically interfere more potently with the interactions of T-tropic strains with CXCR4 than with M-tropic viruses and CCR5. A differential effect of this nature could suppress the emergence of T-tropic viruses. Consistent with this possibility, neutralizing antibodies are capable of preventing the CD4-dependent association of gp120 with CCR5 (42, 94, 103), and chemokines can also prevent the coreceptor interactions of HIV-1 (8, 13, 23, 28, 70).Here, we explore whether the efficiency of HIV-1 neutralization is affected by coreceptor usage. Although earlier studies have not found T-tropic strains to be inherently more neutralization sensitive than M-tropic ones (20, 40, 44), previously available reagents and techniques may not have been adequate to fully address this question. One major problem is that even single residue changes can drastically affect both antibody binding to neutralization epitopes and the HIV-1 phenotype (25, 55, 62, 67, 83, 91), and so studies using relatively unrelated viruses and a fixed antibody (polyclonal or monoclonal) preparation have two variables to contend with: the viral phenotype (coreceptor use) and the antigenic structure of the virus and hence the efficiency of the antibody-virion interaction.We have used a new experimental strategy to explore whether coreceptor usage affects neutralization sensitivity in the absence of other confounding variables: the use of dualtropic viruses able to enter CD4+ cells via either CCR5 or CXCR4. By using a constant HIV-1 isolate or clone and the same monoclonal antibodies (MAbs) or CD4-based reagents as neutralizing agents, we can ensure that the only variable under study in the neutralization reaction is the nature of the coreceptor used for entry. Our major conclusion is that there is no strong association between coreceptor usage and neutralization sensitivity for primary HIV-1 isolates. Independent studies have reached the same conclusion (53a, 59). The emergence of T-tropic (SI) viruses in vivo may be unlikely to be due to escape from antibody-mediated selection pressure.  相似文献   

12.
13.
14.
15.
HIV-1 Gag can assemble and generate virions at the plasma membrane, but it is also present in endosomes where its role remains incompletely characterized. Here, we show that HIV-1 RNAs and Gag are transported on endosomal vesicles positive for TiVamp, a v-SNARE involved in fusion events with the plasma membrane. Inhibition of endosomal traffic did not prevent viral release. However, inhibiting lysosomal degradation induced an accumulation of Gag in endosomes and increased viral production 7-fold, indicating that transport of Gag to lysosomes negatively regulates budding. This also suggested that endosomal Gag-RNA complexes could access retrograde pathways to the cell surface and indeed, depleting cells of TiVamp-reduced viral production. Moreover, inhibition of endosomal transport prevented the accumulation of Gag at sites of cellular contact. HIV-1 Gag could thus generate virions using two pathways, either directly from the plasma membrane or through an endosome-dependent route. Endosomal Gag-RNA complexes may be delivered at specific sites to facilitate cell-to-cell viral transmission.The production of infectious retroviral particles is an ordered process that includes many steps (for review see Refs. 13). In particular, three major viral components, Gag, the envelope, and genomic RNAs have to traffic inside the cell to reach their assembly site. Viral biogenesis is driven by the polyprotein Gag, which is able to make viral-like particles when expressed alone (4). Upon release, HIV-14 Gag is processed by the viral protease into matrix (MA(p17)), capsid (CA(p24)), nucleocapsid (NC(p7)), p6, and smaller peptides SP1 and SP2. Gag contains several domains that are essential for viral assembly: a membrane binding domain (M) in MA; a Gag-Gag interaction domain in CA; an assembly domain (I) in NC; and a late domain (L) in p6, which recruits the cellular budding machinery. Genomic RNAs are specifically recognized by NC, and they play fundamental roles in viral biogenesis by acting as a scaffold for Gag multimerization (5).It has been demonstrated that retroviruses bud by hijacking the endosomal machinery that sorts proteins into internal vesicles of multivesicular bodies (for review, see Refs. 6, 7). Indeed, these vesicles bud with the same topology as viral particles. Proteins sorted into this pathway are usually destined for degradation in lysosomes, but some can also recycle to the plasma membrane (for review see Refs. 8, 9). They are also frequently ubiquitinated on their cytoplasmic domain (10, 11), allowing their recognition by ESCRT complexes. ESCRT-0 and ESCRT-I recognize ubiquitinated cargo present at the surface of endosomes and recruit other ESCRT complexes (1214). ESCRT-III is believed to function directly in the formation of multivesicular body intralumenal vesicles (12), even though its mechanism of action is currently not understood. Remarkably, Gag L domains interact directly with components of the multivesicular body-sorting machinery (for review see Ref. 15). HIV-1 Gag uses a PTAP motif to bind Tsg101, a component of ESCRT-I (1619), and a YPLTSL motif to interact with Alix, a protein linked to ESCRT-I and -III (2022). Finally, various ubiquitin ligases are also required directly or indirectly during HIV-1 biogenesis (23, 24; for review see Ref. 25).In many cell lines, Gag is found both at the plasma membrane and in endosomes. This has led to the hypothesis that there are several assembly sites for HIV-1 (1, 3). First, Gag can initiate and complete assembly at the plasma membrane. This is thought to occur predominantly in T lymphocytes, and this process is supported by several lines of evidences: (i) disruption of endosomal trafficking with drugs does not prevent viral production (26, 27); (ii) ESCRT complexes can be recruited at the plasma membrane, at sites where Gag accumulates (2830); (iii) Gag can be seen multimerizing and budding from the plasma membrane in live cells (31). Second, Gag could initiate assembly in endosomes, and then traffic to the cell surface to be released. This is mainly supported by the presence of Gag in endosomes in several cell lines (3234), including T cells and more strikingly macrophages (32, 35, 3639). However, we are currently lacking functional experiments addressing the role of this endosomal pool of Gag, and it is still not clear to what extent it contributes to the production of viral particles. Nevertheless, the presence of Gag in endosomes might facilitate recruitment of ESCRT complexes (34, 40), packaging of viral genomic RNAs (32, 41), and incorporation of the envelope (42). It may also be important for polarized budding (43, 44) and to create a viral reservoir in infected cells (45, 46).Despite great progress, the traffic of HIV-1 components is still not fully elucidated. In particular, the transport of the genomic RNAs is poorly understood. In this study, we have used single molecule techniques to investigate the trafficking of HIV-1 RNAs in fixed and live cells, and we show that they are transported on endosomal vesicles. We also obtained functional evidence that Gag and viral RNAs can use at least two trafficking pathways to produce virions, one going directly from the plasma membrane and another one passing through endosomes.  相似文献   

16.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

17.
18.
19.
20.
Most human genes undergo alternative splicing, but aberrant splice forms are hallmarks of many cancers, usually resulting from mutations initiating abnormal exon skipping, intron retention, or the introduction of a new splice sites. We have identified a family of aberrant splice variants of HAS1 (the hyaluronan synthase 1 gene) in some B lineage cancers, characterized by exon skipping and/or partial intron retention events that occur either together or independently in different variants, apparently due to accumulation of inherited and acquired mutations. Cellular, biochemical, and oncogenic properties of full-length HAS1 (HAS1-FL) and HAS1 splice variants Va, Vb, and Vc (HAS1-Vs) are compared and characterized. When co-expressed, the properties of HAS1-Vs are dominant over those of HAS1-FL. HAS1-FL appears to be diffusely expressed in the cell, but HAS1-Vs are concentrated in the cytoplasm and/or Golgi apparatus. HAS1-Vs synthesize detectable de novo HA intracellularly. Each of the HAS1-Vs is able to relocalize HAS1-FL protein from diffuse cytoskeleton-anchored locations to deeper cytoplasmic spaces. This HAS1-Vs-mediated relocalization occurs through strong molecular interactions, which also serve to protect HAS1-FL from its otherwise high turnover kinetics. In co-transfected cells, HAS1-FL and HAS1-Vs interact with themselves and with each other to form heteromeric multiprotein assemblies. HAS1-Vc was found to be transforming in vitro and tumorigenic in vivo when introduced as a single oncogene to untransformed cells. The altered distribution and half-life of HAS1-FL, coupled with the characteristics of the HAS1-Vs suggest possible mechanisms whereby the aberrant splicing observed in human cancer may contribute to oncogenesis and disease progression.About 70–80% of human genes undergo alternative splicing, contributing to proteomic diversity and regulatory complexities in normal development (1). About 10% of mutations listed so far in the Human Gene Mutation Database (HGMD) of “gene lesions responsible for human inherited disease” were found to be located within splice sites. Furthermore, it is becoming increasingly apparent that aberrant splice variants, generated mostly due to splicing defects, play a key role in cancer. Germ line or acquired genomic changes (mutations) in/around splicing elements (24) promote aberrant splicing and aberrant protein isoforms.Hyaluronan (HA)3 is synthesized by three different plasma membrane-bound hyaluronan synthases (1, 2, and 3). HAS1 undergoes alternative and aberrant intronic splicing in multiple myeloma, producing truncated variants termed Va, Vb, and Vc (5, 6), which predicted for poor survival in a cohort of multiple myeloma patients (5). Our work suggests that this aberrant splicing arises due to inherited predispositions and acquired mutations in the HAS1 gene (7). Cancer-related, defective mRNA splicing caused by polymorphisms and/or mutations in splicing elements often results in inactivation of tumor suppressor activity (e.g. HRPT2 (8, 9), PTEN (10), MLHI (1114), and ATR (15)) or generation of dominant negative inhibitors (e.g. CHEK2 (16) and VWOX (17)). In breast cancer, aberrantly spliced forms of progesterone and estrogen receptors are found (reviewed in Ref. 3). Intronic mutations inactivate p53 through aberrant splicing and intron retention (18). Somatic mutations with the potential to alter splicing are frequent in some cancers (1925). Single nucleotide polymorphisms in the cyclin D1 proto-oncogene predispose to aberrant splicing and the cyclin D1b intronic splice variant (2629). Cyclin D1b confers anchorage independence, is tumorogenic in vivo, and is detectable in human tumors (30), but as yet no clinical studies have confirmed an impact on outcome. On the other hand, aberrant splicing of HAS1 shows an association between aberrant splice variants and malignancy, suggesting that such variants may be potential therapeutic targets and diagnostic indicators (19, 3133). Increased HA expression has been associated with malignant progression of multiple tumor types, including breast, prostate, colon, glioma, mesothelioma, and multiple myeloma (34). The three mammalian HA synthase (HAS) isoenzymes synthesize HA and are integral transmembrane proteins with a probable porelike structural assembly (3539). Although in humans, the three HAS genes are located on different chromosomes (hCh19, hCh8, and hCh16, respectively) (40), they share a high degree of sequence homology (41, 42). HAS isoenzymes synthesize a different size range of HA molecules, which exhibit different functions (43, 44). HASs contribute to a variety of cancers (4555). Overexpression of HASs promotes growth and/or metastatic development in fibrosarcoma, prostate, and mammary carcinoma, and the removal of the HA matrix from a migratory cell membrane inhibits cell movement (45, 53). HAS2 confers anchorage independence (56). Our work has shown aberrant HAS1 splicing in multiple myeloma (5) and Waldenstrom''s macroglobulinemia (6). HAS1 is overexpressed in colon (57), ovarian (58), endometrial (59), mesothelioma (60), and bladder cancers (61). A HAS1 splice variant is detected in bladder cancer (61).Here, we characterize molecular and biochemical characteristics of HAS1 variants (HAS1-Vs) (5), generated by aberrant splicing. Using transient transfectants and tagged HAS1 family constructs, we show that HAS1-Vs differ in cellular localization, de novo HA localization, and turnover kinetics, as compared with HAS1-FL, and dominantly influence HAS1-FL when co-expressed. HAS1-Vs proteins form intra- and intermolecular associations among themselves and with HAS1-FL, including covalent interactions and multimer formation. HAS1-Vc supports vigorous cellular transformation of NIH3T3 cells in vitro, and HAS1-Vc-transformed NIH3T3 cells are tumorogenic in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号