首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence suggests that preverbal infants' gaze following can be triggered only if an actor's head turn is preceded by the expression of communicative intent [1]. Such connectedness between ostensive and referential signals may be uniquely human, enabling infants to effectively respond to referential communication directed to them. In the light of increasing evidence of dogs' social communicative skills [2], an intriguing question is whether dogs' responsiveness to human directional gestures [3] is associated with the situational context in an infant-like manner. Borrowing a method used in infant studies [1], dogs watched video presentations of a human actor turning toward one of two objects, and their eye-gaze patterns were recorded with an eye tracker. Results show a higher tendency of gaze following in dogs when the human's head turning was preceded by the expression of communicative intent (direct gaze, addressing). This is the first evidence to show that (1) eye-tracking techniques can be used for studying dogs' social skills and (2) the exploitation of human gaze cues depends on the communicatively relevant pattern of ostensive and referential signals in dogs. Our findings give further support to the existence of a functionally infant-analog social competence in this species.  相似文献   

2.
Autism spectrum disorders (henceforth autism) are diagnosed in around 1% of the population [1]. Familial liability confers risk for a broad spectrum of difficulties including the broader autism phenotype (BAP) [2, 3]. There are currently no reliable predictors of autism in infancy, but characteristic behaviors emerge during the second year, enabling diagnosis after this age [4, 5]. Because indicators of brain functioning may be sensitive predictors, and atypical eye contact is characteristic of the syndrome [6-9] and the BAP [10, 11], we examined whether neural sensitivity to eye gaze during infancy is associated with later autism outcomes [12, 13]. We undertook a prospective longitudinal study of infants with and without familial risk for autism. At 6-10 months, we recorded infants' event-related potentials (ERPs) in response to viewing faces with eye gaze directed toward versus away from the infant [14]. Longitudinal analyses showed that characteristics of ERP components evoked in response to dynamic eye gaze shifts during infancy were associated with autism diagnosed at 36 months. ERP responses to eye gaze may help characterize developmental processes that lead to later emerging autism. Findings also elucidate the mechanisms driving the development of the social brain in infancy.  相似文献   

3.
Infants'' sensitivity to ostensive signals, such as direct eye contact and infant-directed speech, is well documented in the literature. We investigated how infants interpret such signals by assessing common processing mechanisms devoted to them and by measuring neural responses to their compounds. In Experiment 1, we found that ostensive signals from different modalities display overlapping electrophysiological activity in 5-month-old infants, suggesting that these signals share neural processing mechanisms independently of their modality. In Experiment 2, we found that the activation to ostensive signals from different modalities is not additive to each other, but rather reflects the presence of ostension in either stimulus stream. These data support the thesis that ostensive signals obligatorily indicate to young infants that communication is directed to them.  相似文献   

4.
Predation is a powerful agent of natural selection, driving the evolution of antipredator calls [1]. These calls have been shown to communicate predator category [2-4] and/or predator distance to conspecifics [5-7]. However, the risk posed by predators depends also on predator behavior [8], and the ability of prey to communicate predator behavior to conspecifics would be a selective advantage reducing their predation risk. I tested this idea in Siberian jays (Perisoreus infaustus), a group-living bird species. Predation by hawks, and to a lesser extent by owls, is substantial and the sole cause of mortality in adult jays [9]. By using field data and predator-exposure experiments, I show here that jays used antipredator calls for hawks depending on predator behavior. A playback experiment demonstrated that these prey-to-prey calls were specific to hawk behavior (perch, prey search, attack) and elicited distinct, situation-specific escape responses. This is the first study to demonstrate that prey signals convey information about predator behavior to conspecifics. Given that antipredator calls in jays aim at protecting kin group members [10, 11], consequently lowering their mortality [9], kin-selected benefits could be an important factor for the evolution of predator-behavior-specific antipredator calls in such systems.  相似文献   

5.
In this study we investigated the communicative abilities of 10 orangutans (Pongo pygmaeus) and seven western lowland gorillas (Gorilla gorilla gorilla), and particularly focused on their sensitivity to the attentional state of a human experimenter when choosing from a repertoire of both auditory and visual communication strategies. In experiment 1 a banana was placed in front of the subject's cage and a human experimenter was either present or absent. The subject's behavior was recorded for 60 sec. Both gorillas and orangutans gestured (t(16)=-3.58, P<.005) and vocalized (t(16)=-2.47, P<.05) more when the experimenter was present. In experiment 2 a human experimenter held a banana in front of the subject's cage and was oriented either toward or away from the subject. Again the subject's behavior was recorded for 60 sec. In this experiment both gorillas and orangutans gestured significantly more frequently (t(16)=3.40, P<.005) when the experimenter was oriented toward them. In addition, gorillas and orangutans used other forms of visual communication signals, such as lip pout (t(16)=3.66, P<.005), barter/trade (t(16)=2.31, P<.05), and body present (t(16)=2.31, P<.05) significantly more when an experimenter was facing them. The overall results indicate that both gorillas and orangutans are sensitive to the attentional state of a human experimenter and use appropriate communicative signals to gain that individual's attention. These results are also similar to previous findings on communicative behaviors in chimpanzees.  相似文献   

6.
Although geographic variation in an organism's traits is often seen as a consequence of selection on locally adaptive genotypes accompanied by canalized development [1], developmental plasticity may also play a role [2, 3], especially in behavior [4]. Behavioral plasticity includes both individual learning and social learning of local innovations ("culture"). Cultural plasticity is the undisputed and dominant explanation for geographic variation in human behavior. It has recently also been suggested to hold for various primates and birds [5], but this proposition has been met with widespread skepticism [6-8]. Here, we analyze parallel long-term studies documenting extensive geographic variation in behavioral ecology, social organization, and putative culture of orangutans [9] (genus Pongo). We show that genetic differences among orangutan populations explain only very little of the geographic variation in behavior, whereas environmental differences explain much more, highlighting the importance of developmental plasticity. Moreover, variation in putative cultural variants is explained by neither genetic nor environmental differences, corroborating the cultural interpretation. Thus, individual and cultural plasticity provide a plausible pathway toward local adaptation in long-lived organisms such as great apes and formed the evolutionary foundation upon which human culture was built.  相似文献   

7.
Neural correlates of social target value in macaque parietal cortex   总被引:1,自引:0,他引:1  
Animals as diverse as arthropods [1], fish [2], reptiles [3], birds [4], and mammals, including primates [5], depend on visually acquired information about conspecifics for survival and reproduction. For example, mate localization often relies on vision [6], and visual cues frequently advertise sexual receptivity or phenotypic quality [5]. Moreover, recognizing previously encountered competitors or individuals with preestablished territories [7] or dominance status [1, 5] can eliminate the need for confrontation and the associated energetic expense and risk for injury. Furthermore, primates, including humans, tend to look toward conspecifics and objects of their attention [8, 9], and male monkeys will forego juice rewards to view images of high-ranking males and female genitalia [10]. Despite these observations, we know little about how the brain evaluates social information or uses this appraisal to guide behavior. Here, we show that neurons in the primate lateral intraparietal area (LIP), a cortical area previously linked to attention and saccade planning [11, 12], signal the value of social information when this assessment influences orienting decisions. In contrast, social expectations had no impact on LIP neuron activity when monkeys were not required to make a choice. These results demonstrate for the first time that parietal cortex carries abstract, modality-independent target value signals that inform the choice of where to look.  相似文献   

8.
As compared with other primates, humans have especially visible eyes (e.g., white sclera). One hypothesis is that this feature of human eyes evolved to make it easier for conspecifics to follow an individual's gaze direction in close-range joint attentional and communicative interactions, which would seem to imply especially cooperative (mututalistic) conspecifics. In the current study, we tested one aspect of this cooperative eye hypothesis by comparing the gaze following behavior of great apes to that of human infants. A human experimenter "looked" to the ceiling either with his eyes only, head only (eyes closed), both head and eyes, or neither. Great apes followed gaze to the ceiling based mainly on the human's head direction (although eye direction played some role as well). In contrast, human infants relied almost exclusively on eye direction in these same situations. These results demonstrate that humans are especially reliant on eyes in gaze following situations, and thus, suggest that eyes evolved a new social function in human evolution, most likely to support cooperative (mututalistic) social interactions.  相似文献   

9.
Development of cue integration in human navigation   总被引:1,自引:0,他引:1  
Mammalian navigation depends both on visual landmarks and on self-generated (e.g., vestibular and proprioceptive) cues that signal the organism's own movement [1-5]. When these conflict, landmarks can either reset estimates of self-motion or be integrated with them [6-9]. We asked how humans combine these information sources and whether children, who use both from a young age [10-12], combine them as adults do. Participants attempted to return an object to its original place in an arena when given either visual landmarks only, nonvisual self-motion information only, or both. Adults, but not 4- to 5-year-olds or 7- to 8-year-olds, reduced their response variance when both information sources were available. In an additional "conflict" condition that measured relative reliance on landmarks and self-motion, we predicted behavior under two models: integration (weighted averaging) of the cues and alternation between them. Adults' behavior was predicted by integration, in which the cues were weighted nearly optimally to reduce variance, whereas children's behavior was predicted by alternation. These results suggest that development of individual spatial-representational systems precedes development of the capacity to combine these within a common reference frame. Humans can integrate spatial cues nearly optimally to navigate, but this ability depends on an extended developmental process.  相似文献   

10.
Hoehl S  Wiese L  Striano T 《PloS one》2008,3(6):e2389
Eye gaze is an important social cue which is used to determine another person's focus of attention and intention to communicate. In combination with a fearful facial expression eye gaze can also signal threat in the environment. The ability to detect and understand others' social signals is essential in order to avoid danger and enable social evaluation. It has been a matter of debate when infants are able to use gaze cues and emotional facial expressions in reference to external objects. Here we demonstrate that by 3 months of age the infant brain differentially responds to objects as a function of how other people are reacting to them. Using event-related electrical brain potentials (ERPs), we show that an indicator of infants' attention is enhanced by an adult's expression of fear toward an unfamiliar object. The infant brain showed an increased Negative central (Nc) component toward objects that had been previously cued by an adult's eye gaze and frightened facial expression. Our results further suggest that infants' sensitivity cannot be due to a general arousal elicited by a frightened face with eye gaze directed at an object. The neural attention system of 3 month old infants is sensitive to an adult's eye gaze direction in combination with a fearful expression. This early capacity may lay the foundation for the development of more sophisticated social skills such as social referencing, language, and theory of mind.  相似文献   

11.
The transmission of cultural knowledge requires learners to identify what relevant information to retain and selectively imitate when observing others' skills. Young human infants--without relying on language or theory of mind--already show evidence of this ability. If, for example, in a communicative context, a model demonstrates a head action instead of a more efficient hand action, infants imitate the head action only if the demonstrator had no good reason to do so, suggesting that their imitation is a selective, interpretative process [1]. Early sensitivity to ostensive-communicative cues and to the efficiency of goal-directed actions is thought to be a crucial prerequisite for such relevance-guided selective imitation [2]. Although this competence is thought to be human specific [2], here we show an analog capacity in the dog. In our experiment, subjects watched a demonstrator dog pulling a rod with the paw instead of the preferred mouth action. In the first group, using the "inefficient" action was justified by the model's carrying of a ball in her mouth, whereas in the second group, no constraints could explain the demonstrator's choice. In the first trial after observation, dogs imitated the nonpreferred action only in the second group. Consequently, dogs, like children, demonstrated inferential selective imitation.  相似文献   

12.
Several recent studies have reported that cognitive training in adults does not lead to generalized performance improvements [1, 2], whereas many studies with younger participants (children 4 years and older) have reported distal transfer [3, 4]. This is consistent with convergent evidence [5-8] for greater neural and behavioral plasticity earlier in development. We used gaze-contingent paradigms to train 11-month-old infants on a battery of attentional control tasks. Relative to an active control group, and following only a relatively short training period, posttraining assessments revealed improvements in cognitive control and sustained attention, reduced saccadic reaction times, and reduced latencies to disengage visual attention. Trend changes were also observed in spontaneous looking behavior during free play, but no change was found in working memory. The amount of training correlated with the degree of improvement on some measures. These findings are to our knowledge the first demonstration of distal transfer following attentional control training in infancy. Given the longitudinal relationships identified between early attentional control and learning in academic settings [9, 10], and the causal role that impaired control of attention may play in disrupting learning in several disorders [11-14], the current results open a number of avenues for future work.  相似文献   

13.
14.
Nongenetic transmission of behavioral traits via social learning allows local traditions in humans, and, controversially, in other animals [1-4]. Social learning is usually studied as an intraspecific phenomenon (but see [5-7]). However, other species with some overlap in ecology can be more than merely potential competitors: prior settlement and longer residence can render them preferable sources of information [8]. Socially induced acquisition of choices or preferences capitalizes upon the knowledge of presumably better-informed individuals [9] and should be adaptive under many natural circumstances [10, 11]. Here we show with a field experiment that females of two migrant flycatcher species can acquire a novel, arbitrary preference of competing resident tits for a symbol attached to the nest sites. The experiment demonstrates that such blind acquisition of heterospecific traits can occur in the wild. Even though genetic variation for habitat preferences exists in many taxa [12] and overlap between bird species likely induces costs [13], this result shows that interspecific social learning can cause increased overlap in nest-site preferences. Conventional, negative species interactions push ecological niches of species apart, but the use of competing species as a source of information counters that force and may lead to convergence.  相似文献   

15.
Seitz AR  Kim R  Shams L 《Current biology : CB》2006,16(14):1422-1427
Numerous studies show that practice can result in performance improvements on low-level visual perceptual tasks [1-5]. However, such learning is characteristically difficult and slow, requiring many days of training [6-8]. Here, we show that a multisensory audiovisual training procedure facilitates visual learning and results in significantly faster learning than unisensory visual training. We trained one group of subjects with an audiovisual motion-detection task and a second group with a visual motion-detection task, and compared performance on trials containing only visual signals across ten days of training. Whereas observers in both groups showed improvements of visual sensitivity with training, subjects trained with multisensory stimuli showed significantly more learning both within and across training sessions. These benefits of multisensory training are particularly surprising given that the learning of visual motion stimuli is generally thought to be mediated by low-level visual brain areas [6, 9, 10]. Although crossmodal interactions are ubiquitous in human perceptual processing [11-13], the contribution of crossmodal information to perceptual learning has not been studied previously. Our results show that multisensory interactions can be exploited to yield more efficient learning of sensory information and suggest that multisensory training programs would be most effective for the acquisition of new skills.  相似文献   

16.
Frith CD 《Current biology : CB》2008,18(12):R524-R525
A new study of gaze following shows that human infants are highly sensitive to the communicative intent of the person they are interacting with.  相似文献   

17.
When people are not fully understood, they persist with attempts to communicate, elaborating their speech in order to better convey their meaning [1]. We investigated whether captive orangutans (Pongo pygmaeus and Pongo abelii) would use analogous communicative strategies in signaling to a human experimenter, and whether they could distinguish different degrees of misunderstanding. Orangutans' behavior varied according to how well they had apparently been understood. When their aims were not met, they persisted in communicative attempts. However, when the interlocutor appeared partially to understand their meaning, orangutans narrowed down their range of signals, focusing on gestures already used and repeating them frequently. In contrast, when completely misunderstood, orangutans elaborated their range of gestures, avoiding repetition of failed signals. It is therefore possible, from communicative signals alone, to determine how well an orangutan's intended goal has been met. This differentiation might function under natural conditions to allow an orangutan's intended goals to be understood more efficiently. In the absence of conventional labels, communicating the fact that an intention has been somewhat misunderstood is an important way to establish shared meaning.  相似文献   

18.
In many tropical animals, male and female breeding partners combine their songs to produce vocal duets [1-5]. Duets are often so highly coordinated that human listeners mistake them for the songs of a single animal [6]. Behavioral ecologists rank duets among the most complex vocal performances in the animal kingdom [7, 8]. Despite much research, the evolutionary significance of duets remains elusive [9], in part because many duetting animals live in tropical habitats where dense vegetation makes behavioral observation difficult or impossible. Here, we evaluate the duetting behavior of rufous-and-white wrens (Thryothorus rufalbus) in the humid forests of Costa Rica. We employ two innovative technical approaches to study duetting behavior: an eight-microphone acoustic location system capable of triangulating animals' positions on the basis of recordings of their vocalizations [10] and dual-speaker playback capable of simulating duets in a spatially realistic manner [11]. Our analyses provide the first detailed spatial information on duetting in both a natural context and during confrontations with rivals. We demonstrate that birds perform duets across highly variable distances, that birds approach their partner after performing duets, and that duets of rivals induce aggressive, sex-specific responses. We conclude that duets serve distinct functions in aggressive and nonaggressive contexts.  相似文献   

19.
Quantitative modeling of human brain activity can provide crucial insights about cortical representations [1, 2] and can form the basis for brain decoding devices [3-5]. Recent functional magnetic resonance imaging (fMRI) studies have modeled brain activity elicited by static visual patterns and have reconstructed these patterns from brain activity [6-8]. However, blood oxygen level-dependent (BOLD) signals measured via fMRI are very slow [9], so it has been difficult to model brain activity elicited by dynamic stimuli such as natural movies. Here we present a new motion-energy [10, 11] encoding model that largely overcomes this limitation. The model describes fast visual information and slow hemodynamics by separate components. We recorded BOLD signals in occipitotemporal visual cortex of human subjects who watched natural movies and fit the model separately to individual voxels. Visualization of the fit models reveals how early visual areas represent the information in movies. To demonstrate the power of our approach, we also constructed a Bayesian decoder [8] by combining estimated encoding models with a sampled natural movie prior. The decoder provides remarkable reconstructions of the viewed movies. These results demonstrate that dynamic brain activity measured under naturalistic conditions can be decoded using current fMRI technology.  相似文献   

20.
Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia[1-3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia[5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin resulting from 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号