首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Zinc is concentrated in the synaptic vesicles via zinc transporter-3 (ZnT3), released from glutamatergic (zincergic) neuron terminals, and serves as a signal factor (Zn2+ signal) in the intracellular (cytosol) compartment as well as in the extracellular compartment. Synaptic Zn2+ signaling is dynamically linked to neurotransmission via glutamate and is involved in synaptic plasticity such as long-term potentiation (LTP) and cognitive activity. Zinc concentration in the synaptic vesicles is correlated with ZnT3 protein expression and potentially decreased under chronic zinc deficiency. Synaptic vesicle serves as a large pool for Zn2+ signaling and other organelles might also serve as a pool for Zn2+ signaling. ZnT3KO mice and zinc-deficient animals, which lack or reduce Zn2+ release into the extracellular space by action potentials, are able to recognize novel or displaced objects normally. However, the amount of Zn2+ functioning as a signal factor increases along with brain development. Exogenous Zn2+ lowers the threshold in hippocampal CA1 LTP induction in young rat. Furthermore, ZnT3KO mice lose advanced cognition such as contextual discrimination. It is likely that the optimal range of synaptic Zn2+ signaling is involved in cognitive activity. On the basis of the findings on the relationship between dyshomeostasis of synaptic Zn2+ and cognition, this paper summarizes the possible involvement of intracellular Zn2+ signaling in cognitive ability.  相似文献   

2.
Zinc is released from glutamatergic (zincergic) neuron terminals in the brain, followed by the increase in Zn2+ concentration in the intracellular (cytosol) compartment as well as that in the extracellular compartment. Intracellular Zn2+ concentration mainly increases through calcium-permeable channels and serves as Zn2+ signal as well as extracellular Zn2+ concentration. Hippocampal Zn2+ signaling may participate in synaptic plasticity such as long-term potentiation and cognitive function. On the other hand, subclinical zinc deficiency is common in the old who might be more susceptible to depression. Zinc deficiency causes abnormal glucocorticoid secretion and increases depression-like behavior in animals. Neuropsychological symptoms are observed prior to the decrease in Zn2+ signal in the hippocampus under zinc deficiency. This paper summarizes that hippocampal Zn2+ signaling serves to maintain healthy brain and that glucocorticoid signaling, which is responsive to zinc homeostasis in the living body, is linked to the pathophysiology of depression.  相似文献   

3.
Zinc is a trace nutrient for the brain and a signal factor to serve for brain function. A portion of zinc is released from glutamatergic (zincergic) neuron terminals in the brain. Synaptic Zn2+ signaling is involved in synaptic plasticity such as long-term potentiaion (LTP), which is a cellular mechanism of memory. The block and/or loss of synaptic Zn2+ signaling in the hippocampus and amygdala with Zn2+ chelators affect cognition, while the role of synaptic Zn2+ signal is poorly understood, because zinc-binding proteins are great in number and multi-functional. Chronic zinc deficiency also affects cognition and cognitive decline induced by zinc deficiency might be associated with the increase in plasma glucocorticoid rather than the decrease in synaptic Zn2+ signaling. On the other hand, excess glutamatergic (zincergic) neuron activity induces excess influx of extracellular Zn2+ into hippocampal neurons, followed by cognitive decline. Intracellular Zn2+ dynamics, which is linked to presynaptic glutamate release, is critical for LTP and cognitive performance. This paper deals with insight into cognition from zinc as a nutrient and signal factor.  相似文献   

4.
Acetylcholine (ACh) can effect vasodilation by several mechanisms, including activation of endothelial nitric oxide (NO) synthase and prostaglandin (PG) production. In human skin, exogenous ACh increases both skin blood flow (SkBF) and bioavailable NO levels, but the relative increase is much greater in SkBF than NO. This led us to speculate ACh may dilate cutaneous blood vessels through PGs, as well as NO. To test this hypothesis, we performed a study in 11 healthy people. We measured SkBF by laser-Doppler flowmetry (LDF) at four skin sites instrumented for intradermal microdialysis. One site was treated with ketorolac (Keto), a nonselective cyclooxygenase antagonist. A second site was treated with NG-nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase. A third site was treated with a combination of Keto and L-NAME. The fourth site was an untreated control site. After the three treated sites received the different inhibiting agents, ACh was administered to all four sites by intradermal microdialysis. Finally, sodium nitroprusside (SNP) was administered to all four sites. Mean arterial pressure (MAP) was monitored by Finapres, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF/MAP). For data analysis, CVC values for each site were normalized to their respective maxima as effected by SNP. The results showed that both Keto and L-NAME each attenuated the vasodilation induced by exogenous ACh (ACh control = 79 +/- 4% maximal CVC, Keto = 55 +/- 7% maximal CVC, L-NAME = 46 +/- 6% maximal CVC; P < 0.05, ACh vs. Keto or L-NAME). The combination of the two agents produced an even greater attenuation of ACh-induced vasodilation (31 +/- 5% maximal CVC; P < 0.05 vs. all other sites). We conclude that a portion of the vasodilation effected by exogenous ACh in skin is due to NO; however, a significant portion is also mediated by PGs.  相似文献   

5.
Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion.  相似文献   

6.
7.
We have recently demonstrated that endothelium-derived hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor and that endothelial Cu/Zn-superoxide dismutase (SOD) plays an important role in the synthesis of endogenous H2O2 in both animals and humans. We examined whether SOD plays a role in the synthesis of endogenous H2O2 during in vivo reactive hyperemia (RH), an important regulatory mechanism. Mesenteric arterioles from wild-type and Cu,Zn-SOD(-/-) mice were continuously observed by a pencil-type charge-coupled device (CCD) intravital microscope during RH (reperfusion after 20 and 60 s of mesenteric artery occlusion) in the cyclooxygenase blockade under the following four conditions: control, catalase alone, N(G)-monomethyl-L-arginine (L-NMMA) alone, and L-NMMA + catalase. Vasodilatation during RH was significantly decreased by catalase or L-NMMA alone and was almost completely inhibited by L-NMMA + catalase in wild-type mice, whereas it was inhibited by L-NMMA and L-NMMA + catalase in the Cu,Zn-SOD(-/-) mice. RH-induced increase in blood flow after L-NMMA was significantly increased in the wild-type mice, whereas it was significantly reduced in the Cu,Zn-SOD(-/-) mice. In mesenteric arterioles of the Cu,Zn-SOD(-/-) mice, Tempol, an SOD mimetic, significantly increased the ACh-induced vasodilatation, and the enhancing effect of Tempol was decreased by catalase. Vascular H(2)O(2) production by fluorescent microscopy in mesenteric arterioles after RH was significantly increased in response to ACh in wild-type mice but markedly impaired in Cu,Zn-SOD(-/-) mice. Endothelial Cu,Zn-SOD plays an important role in the synthesis of endogenous H(2)O(2) that contributes to RH in mouse mesenteric smaller arterioles.  相似文献   

8.
Dyatlov  V. A. 《Neurophysiology》1988,20(5):489-492
The role of calcium ions in modulating serotonin action on acetylcholine (ACh) response in nonidentified and identified (LPa3 and RPa3) neurons ofHelix pomatia was investigated using voltage-clamping at the neuronal membrane. Exposure for 1 min to serotonin prior to ACh application reduced response to ACh in neuron LPa3 and raised it in RPa3. The same two patterns of modulating ACh-induced response were produced by extracellular application of theophylline and dibutyryl c-AMP. Injecting calcium ions into neuron LPa3 led to reinforcement of ACh-induced current in the presence of serotonin, thus changing the pattern of serotonin-induced modulation of ACh response in this unit. In neuron RPa3, the same process enhanced the serotonin-induced modulating effect on ACh response but without changing the pattern of modulation, while injected EDTA produced the reverse effects. Increased intracellular concentration of calcium ions brought about a reduction in the degree of serotonin-induced modulation of ACh response in neuron RPa3. Possible reasons are discussed for changes in serotonin-induced bimodal modulation of ACh response in test neurons produced by altering the extracellular concentration of calcium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 666–671, September–October, 1988.  相似文献   

9.
The dynamic light scattering methods are widely used in biomedical diagnostics involving evaluation of blood flow. However, there exist some difficulties in quantitative interpretation of backscattered light signals from the viewpoint of diagnostic information. This study considers the application of the high‐speed videocapillaroscopy (VCS) method that provides the direct measurement of the red blood cells (RBCs) velocity into a capillary. The VCS signal presents true oscillation nature of backscattered light caused by moving RBCs. Thus, the VCS signal can be assigned as a reference one with respect to more complicated signals like in laser Doppler flowmetry (LDF). An essential correlation between blood flow velocity oscillations in a separate human capillary and the integral perfusion estimate obtained by the LDF method has been found. The observation of blood flow by the VCS method during upper arm occlusion has shown emergence of the reverse blood flow effect in capillaries that corresponds to the biological zero signal in the LDF. The reverse blood flow effect has to be taken into account in interpretation of LDF signals.   相似文献   

10.
Much less attention has been paid to Zn2+ in artificial cerebrospinal fluid (ACSF), i.e., extracellular medium, used for in vitro slice experiments than divalent cations such as Ca2+. Approximately 2 mM Ca2+ is added to conventional ACSF from essentiality of Ca2+ signaling in neurons and glial cells. However, no Zn2+ is added to it, even though the importance of Zn2+ signaling in them is recognizing. On the other hand, synaptic Zn2+ homeostasis is changed during brain slice preparation. Therefore, it is possible that not only neuronal excitation but also synaptic plasticity such as long-term potentiation is modified in ACSF without Zn2+, in which original physiology might not appear. The basal (static) levels of intracellular (cytosolic) Zn2+ and Ca2+ are not significantly different between brain slices prepared with conventional ACSF without Zn2+ and pretreated with ACSF containing 20 nM ZnCl2 for 1 h. In the case of mossy fiber excitation, however, presynaptic activity assessed with FM 4–64 is significantly suppressed in the stratum lucidum of brain slices pretreated with ACSF containing Zn2+, indicating that hippocampal excitability is enhanced in brain slices prepared with ACSF without Zn2+. The evidence suggests that low nanomolar concentration of Zn2+ is necessary for ACSF. Furthermore, exogenous Zn2+ has opposite effect on LTP induction between in vitro and in vivo experiments. It is required to pay attention to extracellular Zn2+ concentration to understand synaptic function precisely.  相似文献   

11.
The effects of successive extracellular iontophoresis of acetylcholine (ACh) and atropine, and intracellular hyperpolarizing iontophoresis of cyclic GMP (cGMP) were studied in single neurons of the coronal-pericruciate cortex of awake cats. (a) Fifty-seven percent of the neurons that were tested responded to ACh with an increase in neuronal input resistance (Rm) and 50% responded to ACh with an increase in firing rate; 65% responded to cGMP with an increase in Rm and 60% responded to cGMP with an increase in firing rate. (b) After application of atropine, increases in Rm and firing rate associated with iontophoresis of ACh failed to recur. (c) Persistent increases in Rm following application of ACh accompanied by current-induced neuronal discharge were not diminished by subsequent application of atropine. (d) Atropine did not prevent increases in Rm and firing rate associated with intracellular iontophoresis of cGMP. (e) All cells tested with both ACh and cGMP that were shown initially to respond to extracellular ACh with increases in Rm were later shown to have comparable responses to cGMP.  相似文献   

12.
The effects of successive extracellular iontophoresis of acetylcholine (ACh) and atropine, and intracellular hyperpolarizing iontophoresis of cyclic GMP (cGMP) were studied in single neurons of the coronal-pericruciate cortex of awake cats. (a) Fifty-seven percent of the neurons that were tested responded to ACh with an increase in neuronal input resistance (Rm) and 50% responded to ACh with an increase in firing rate; 65% responded to cGMP with an increase in Rm and 60% responded to cGMP with an increase in firing rate. (b) After application of atropine, increases in Rm and firing rate associated with iontophoresis of ACh failed to recur. (c) Persistent increases in Rm following application of ACh accompanied by current-induced neuronal discharge were not diminished by subsequent application of atropine. (d) Atropine did not prevent increases in Rm and firing rate associated with intracellular iontophoresis of cGMP. (e) All cells tested with both ACh and cGMP that were shown initially to respond to extracellular ACh with increases in Rm were later shown to have comparable responses to cGMP.  相似文献   

13.
We have used laser-Doppler flowmetry (LDF), a technique that detects movement of erythrocytes, to measure tracheal and bronchial wall blood flow in anesthetized open-chest sheep. LDF derives continuous measurements noninvasively, although fiber-optic bronchoscopy is necessary to introduce the LDF probe into the airways. The response of the LDF flow signals at four regions of the airway walls to varying bronchial arterial flow rates was examined in both live and dead sheep by cannulation and subsequent perfusion of the common bronchial artery at different flow rates by use of a roller pump. In the live sheep, variations in bronchial arterial blood flow resulted in variations in LDF signals in the principal bronchus and in lobar and segmental bronchi but not in the trachea. In the dead sheep, variations in bronchial arterial blood flow resulted in variations in LDF signals in all four regions. Within regions, the average response of the LDF signals to varying bronchial blood flow rates was approximately linear in both live and dead sheep, but considerable site-to-site variation in response was observed. In the live sheep, significant LDF signals were observed when the bronchial arterial flow was set to zero and when the bronchial artery was perfused with dextran solution, which would in theory be expected to produce no LDF signal. A small LDF signal was also detected under zero flow conditions in the dead sheep. These observations suggest that the LDF technique, in addition to detecting blood flow from the bronchial artery also detects background noise and/or collateral circulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Uridine 5′-diphosphate (UDP) plays an important role in controlling vascular tone; however, UDP-mediated response in metabolic syndromes, including obesity and type 2 diabetes in females, remains unclear. In this study, we investigated UDP-mediated response in the aorta of female obese Otsuka Long–Evans Tokushima Fatty (OLETF) rats and control Long–Evans Tokushima Otsuka (LETO) rats. In OLETF rat aortas precontracted by phenylephrine (PE) (vs. LETO), (1) UDP-induced relaxation was increased, whereas acetylcholine (ACh)-induced relaxation was decreased; (2) no UDP- or ACh-induced relaxations were observed in endothelial denudation, whereas UDP-induced small contraction was observed; and (3) NG-nitro-L-arginine [L-NNA, a nitric oxide (NO) synthase inhibitor] eliminated UDP-induced relaxation and small contraction, whereas caused contrasting responses by ACh, including slight relaxations (LETO) and contractions (OLETF). Indomethacin, a cyclooxygenase inhibitor, eliminated the difference in UDP- and ACh-induced relaxations between the groups by increased UDP-induced relaxation in the LETO group and increased ACh-induced relaxation in the OLETF group. MRS2578, a P2Y6 receptor antagonist, eliminated the difference in UDP-induced relaxations between the groups by decreasing UDP-induced relaxation in the OLETF group. MRS2578 had no effect on UDP-induced contraction in endothelium-denuded aortas. Therefore, these findings demonstrate opposite trends of relaxations by UDP and ACh in OLETF and LETO rat aortas. These differences may be attributed to the imbalance between NO and vasoconstrictor prostanoids upon stimulations. Increased UDP-induced relaxation in OLETF rat aorta may be caused by the activation of endothelial MRS2578-sensitive P2Y6 receptor.  相似文献   

15.
Previous in vitro studies have demonstrated zinc (Zn++) inhibition of basal and of potassium (K+) or thyrotropin-releasing hormone (TRH)-stimulated prolactin (PRL) secretion, in a selective, reversible, and dose-dependent manner. Thus, Zn++ may regulate physiologically pituitary PRL secretion. Furthermore, studies with patients with uremia, cirrhosis or prolactinoma, have shown the coexistence of hypozincemia and hyperprolactinemia and zinc supplementation did not correct hyperprolactinemia in these patients. In normal individuals Zn++ administration produced controversial results on PRL secretion. Here, we investigated whether zinc administration affects TRH-stimulated PRL in healthy men. We found that Zn++ administration does not change the TRH-stimulated PRL. Therefore, in normal conditions, Zn++ does not inhibit TRH-stimulated prolactinemia. In addition, we found that acute increases of blood PRL and TRH do not alter blood Zn++ levels.  相似文献   

16.
Adenosine and acetylcholine (ACh) trigger preconditioning through different signaling pathways. We tested whether either could activate myocardial phosphatidylinositol 3-kinase (PI3-kinase), a putative signaling protein in ischemic preconditioning. We used phosphorylation of Akt, a downstream target of PI3-kinase, as a reporter. Exposure of isolated rabbit hearts to ACh increased Akt phosphorylation 2.62 +/- 0.33 fold (P = 0.001), whereas adenosine caused a significantly smaller increase (1.52 +/- 0.08 fold). ACh-induced activation of Akt was abolished by the tyrosine kinase blocker genistein indicating at least one tyrosine kinase between the muscarinic receptor and Akt. ACh-induced Akt activation was blocked by the Src tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) and by 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG-1478), an epidermal growth factor receptor (EGFR) inhibitor, suggesting phosphorylation of a receptor tyrosine kinase in an Src tyrosine kinase-dependent manner. ACh caused tyrosine phosphorylation of the EGFR, which could be blocked by PP2, thus supporting this receptor hypothesis. AG-1478 failed to block the cardioprotection of ACh, however, suggesting that other receptor tyrosine kinases might be involved. Therefore, G(i) protein-coupled receptors can activate PI3-kinase/Akt through transactivation of receptor tyrosine kinases in an Src tyrosine kinase-dependent manner.  相似文献   

17.
To test the hypothesis that cutaneous active vasodilation in heat stress is mediated by a redundant cholinergic cotransmitter system, we examined the effects of atropine on skin blood flow (SkBF) increases during heat stress in persons with (CF) and without cystic fibrosis (non-CF). Vasoactive intestinal peptide (VIP) has been implicated as a mediator of cutaneous vasodilation in heat stress. VIP-containing cutaneous neurons are sparse in CF, yet SkBF increases during heat stress are normal. In CF, augmented ACh release or muscarinic receptor sensitivity could compensate for decreased VIP; if so, active vasodilation would be attenuated by atropine in CF relative to non-CF. Atropine was administered into skin by iontophoresis in seven CF and seven matched non-CF subjects. SkBF was monitored by laser-Doppler flowmetry (LDF) at atropine treated and untreated sites. Blood pressure [mean arterial pressure (MAP)] was monitored (Finapres), and cutaneous vascular conductance was calculated (CVC = LDF/MAP). The protocol began with a normothermic period followed by a 3-min cold stress and 30-45 min of heat stress. Finally, LDF sites were warmed to 42 degrees C to effect maximal vasodilation. CVC was normalized to its site-specific maximum. During heat stress, CVC increased in both CF and non-CF (P < 0.01). CVC increases were attenuated by atropine in both groups (P < 0.01); however, the responses did not differ between groups (P = 0.99). We conclude that in CF there is not greater dependence on redundant cholinergic mechanisms for cutaneous active vasodilation than in non-CF.  相似文献   

18.
Clinical studies have identified hypoadiponectinemia as an independent hypertension risk factor. It is known that adiponectin (APN) can directly cause vasodilation, but the doses required exceed physiologic levels several fold. In the current study, we determine the effect of physiologically relevant APN concentrations upon vascular tone, and investigate the mechanism(s) responsible. Physiologic APN concentrations alone induced no significant vasorelaxation. Interestingly, pretreatment of wild type mouse aortae with physiologic APN levels significantly enhanced acetylcholine (ACh)-induced vasorelaxation (P<0.01), an endothelium-dependent and nitric oxide (NO)-mediated process. Knockout of adiponectin receptor 1 (AdipoR1) or caveolin-1 (Cav-1, a cell signaling facilitating molecule), but not adiponectin receptor 2 (AdipoR2) abolished APN-enhanced ACh-induced vasorelaxation. Immunoblot assay revealed APN promoted the AdipoR1/Cav1 signaling complex in human endothelial cells. Treatment of HUVECs with physiologic APN concentrations caused significant eNOS phosphorylation and nitric oxide (NO) production (P<0.01), an effect abolished in knockdown of either AdipoR1 or Cav-1. Taken together, these data demonstrate for the first time physiologic APN levels enhance the vasorelaxative response to ACh by inducing NO production through AdipoR1/Cav-1 mediated signaling. In physiologic conditions, APN plays an important function of maintaining vascular tone.  相似文献   

19.
1. Intracellular recorclings were made from identified LP11, RBc4, D1 and E4 neurons in perioesophageal ganglionic ring with buccal ganglia of the mollusc Helix pomatia.2. The modulations of acetylcholine (ACh)-induced current by vitamin E in these neurons were investigated using two-microelectrode intracellular recorcling and voltage-clamp techniques.3. ACh receptors function on LP11 and RBc4 neurons was strongly regulated by intracellular calcium ions. For these ACh receptors application of 10−6 to 10−4 M vitamin E and calcium influx both induced an enhancement of the ACh-induced chloride current. Application of 10−5 to 5.10−5M arachidonic acid on the same identified LP11 and RBc4 neurons was shown to evoke a decrease of the ACh-induced chloride current.4. The elevation of calcium levels into D1 and E4 neurons induced a faint decrease of ACh-induced chloride current, but vitamin E and arachidonic acid were ineffective.5. The calmodulin inhibitor, chloropromazine (6.10−-5M), strongly inhibited the enhancing effect of calcium influx on ACh-induced chloride current in LP11 and RBc4 neurons, but it had a weak influence on the effect of vitamin E.6. The effect of vitamin E on surface distribution of functional ACh receptors in LP11 and RBc4 neurons was found.7. Application of 10−4 to 10−6 M vitamin E (DL-α-tocopherol) triggered mechanisms, which after a 5 to 45-min period lead to appearance of functional ACh receptors on the parts of neuronal soma, which were further from the axon.8. Arachidonic acid (vitamin F) evoked a disappearance of functional ACh receptors, which were activated by vitamin E.  相似文献   

20.
Iontophoresis is a valuable method of noninvasive drug delivery for assessment of skin microvascular function, but it is important to consider and minimize its potential nonspecific electrical effects on blood flow. The use of sodium chloride (NaCl) instead of water as the iontophoresis vehicle has been reported to reduce these effects because it has a lower electrical resistance. However, this argument may not be valid when an agonist is added to the vehicle because its resistance will be changed. The aim of our study was to determine whether there is a difference in resistance between water and NaCl when used as vehicles for iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). Four cumulative doses of each drug, dissolved in either water or NaCl, were delivered via iontophoresis to the forearm skin of 14 healthy volunteers. We measured the resulting blood flow responses by using laser-Doppler imaging and the voltage across the electrodes for each delivery as an index of resistance. For ACh and SNP, there were no significant differences between the voltages measured when either water or NaCl was used as the vehicle. However, the blood flow responses to both agonists were significantly lower with NaCl (ACh: 25% lower, P < 0.001; SNP: 15% lower, P = 0.019). The use of NaCl is therefore unlikely to decrease any nonspecific electrical effects, and it may in fact reduce the effective dose of drug delivered. Deionized water is a better iontophoresis vehicle for the assessment of microvascular function in skin when using ACh and SNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号