首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Today, the picture of an evolutionary tree is a very well-known visual image. It is almost impossible to think of the ancestry and relationships of living beings without it. As natural history museums play a major role in the public understanding of evolution, they often present a wide variety of evolutionary trees. However, many studies have shown (Baum and Offner 2008; Baum et al. 2005; Catley and Novick 2008; Evans 2009; Gregory 2008; Matuk 2007; Meir et al. 2007b; Padian 2008) that even though evolutionary trees have the potential to engage visitors of natural history museums with the phenomena of evolution, many of them unwittingly might lead to misunderstandings about the process. As valuable research and educational institutions, one of the museum’s important missions should be the careful design of their exhibits on evolution considering, for example, common preconceptions visitors often bring, such as the notion that evolution is oriented from simple toward complex organisms (incarnating the idea of a single ladder of life amidst the extraordinary diversity of organisms) and that humans are at the pinnacle of the evolutionary story, as well as na?ve interpretations of phylogenies. Our aim in this article is to show from history where many of these misunderstandings come from and to determine whether five important Western natural history museums inadvertently present “problematic” evolutionary trees (which might lead to non-scientific notions).  相似文献   

2.
Biological museums can promote interest in evolution and contribute to its understanding. Modern exhibitions generally emphasize the main concepts of evolutionary theory: biodiversity and adaptation. In 2009 at the Zoological Museum of Rome, to celebrate Charles Darwin, a pilot didactic project was carried out for schools and the general public in order to involve people in evolutionary issues, to stimulate interest and at constructing knowledge about evolution. An exhibition consisting of exhibits and laboratory settings was created. The thematic contexts of the exhibition and the practical experiences were aimed at facing some epistemological obstacles that influence the understanding of evolution and at constructing some “framing concepts” that, on the contrary, could facilitate it. The communicative and didactic strategies were all participative and interactive, based on the personal questioning and restructuring of preexisting knowledge. Behaviors, conversations, and comments by the participants were monitored in order to record any possible change of ideas, interests, attitudes, and learning.  相似文献   

3.
The 55-million-year fossil record of horses (Family Equidae) has been frequently cited as a prime example of long-term macroevolution. In the second half of the nineteenth century, natural history museum exhibits characteristically depicted fossil horses to be a single, straight-line (orthogenetic) progression from ancestor to descendent. By the beginning of the twentieth century, however, paleontologists realized that, rather than representing orthogenesis, the evolutionary pattern of fossil horses was more correctly characterized by a complexly branching phylogenetic tree. We conducted a systematic survey of 20 fossil horse exhibits from natural history museums in the United States. Our resulting data indicate that more than half (55%) of natural history museums today still depict horse evolution as orthogenetic, despite the fact that paleontologists have known for a century that the actual evolutionary pattern of the Family Equidae is branching. Depicting outmoded evolutionary patterns and concepts via museum exhibits, such as fossils horses exemplifying orthogenesis, not only communicates outmoded knowledge but also likely contributes to general misconceptions about evolution for natural history museum visitors.  相似文献   

4.
Museums play a vitally important role in supporting both informal and formal education and are important venues for fostering public understanding of evolution. The Yale Peabody Museum has implemented significant education programs on evolution for many decades, mostly focused on the museum’s extensive collections that represent the past and present tree of life. Twelve years ago, the Peabody began a series of new programs that explored biodiversity and evolution as it relates to human health. Modern evolutionary theory contributes significantly to our understanding of health and disease, and medical topics provide many excellent and relevant examples to explore evolutionary concepts. The Peabody developed a program on vector-borne diseases, specifically Lyme disease and West Nile virus, which have become endemic in the United States. Both of these diseases have complex transmission cycles involving an intricate interplay among the pathogen, host, and vector, each of which is subject to differing evolutionary pressures. Using these stories, the museum explored evolutionary concepts of adaptation (e.g., the evolution of blood feeding), coevolution (e.g., the “arms race” between host and vector), and variation and selection (e.g., antibiotic resistance) among others. The project included a temporary exhibition and the development of curriculum materials for middle and high school teachers and students. The popularity of the exhibit and some formal evaluation of student participants suggested that this educational approach has significant potential to engage wide audiences in evolutionary issues. In addition it demonstrated how natural history museums can incorporate evolution into a broad array of programs.  相似文献   

5.
Tree of life diagrams are graphic representations of phylogeny—the evolutionary history and relationships of lineages—and as such these graphics have the potential to convey key evolutionary ideas and principles to a variety of audiences. Museums play a significant role in teaching about evolution to the public, and tree graphics form a common element in many exhibits even though little is known about their impact on visitor understanding. How phylogenies are depicted and used in informal science settings impacts their accessibility and effectiveness in communicating about evolution to visitors. In this paper, we summarize the analysis of 185 tree of life graphics collected from museum exhibits at 52 institutions and highlight some potential implications of how trees are presented that may support or hinder visitors’ understanding about evolution. While further work is needed, existing learning research suggests that common elements among the diversity of museum trees such as the inclusion of anagenesis and absence of time and shared characters might represent potential barriers to visitor understanding.  相似文献   

6.
Visitors to natural history museums have an incomplete understanding of evolution. Although they are relatively knowledgeable about fossils and geological time, they have a poor understanding of natural selection. Museums in the 21st century can effectively increase public understanding of evolution through interactive displays, novel content (e.g. genomics), engaging videos and cyberexhibits that communicate to a broad spectrum of society, both within the exhibit halls as well as outside the museum.  相似文献   

7.
Accepting evolution   总被引:2,自引:0,他引:2  
Poor public perceptions and understanding of evolution are not unique to the developed and more industrialized nations of the world. International resistance to the science of evolutionary biology appears to be driven by both proponents of intelligent design and perceived incompatibilities between evolution and a diversity of religious faiths. We assessed the success of a first-year evolution course at the University of Cape Town and discovered no statistically significant change in the views of students before the evolution course and thereafter, for questions that challenged religious ideologies about creation, biodiversity, and intelligent design. Given that students only appreciably changed their views when presented with "facts," we suggest that teaching approaches that focus on providing examples of experimental evolutionary studies, and a strong emphasis on the scientific method of inquiry, are likely to achieve greater success. This study also reiterates the importance of engaging with students' prior conceptions, and makes suggestions for improving an understanding and appreciation of evolutionary biology in countries such as South Africa with an inadequate secondary science education system, and a dire lack of public engagement with issues in science.  相似文献   

8.
Perspective: Teaching evolution in higher education   总被引:7,自引:1,他引:6  
Abstract.— In the past decade, the academic community has increased considerably its activity concerning the teaching and learning of evolution. Despite such beneficial activity, the state of public understanding of evolution is considered woefully lacking by most researchers and educators. This lack of understanding affects evolution/science literacy, research, and academia in general. Not only does the general public lack an understanding of evolution but so does a considerable proportion of college graduates. However, it is not just evolutionary concepts that students do not retain. In general, college students retain little of what they supposedly have learned. Worse yet, it is not just students who have avoided science and math who fail to retain fundamental science concepts. Students who have had extensive secondary-level and college courses in science have similar deficits. We examine these issues and explore what distinguishes effective pedagogy from ineffective pedagogy in higher education in general and evolution education in particular. The fundamental problem of students' prior conceptions is considered and why prior conceptions often underpin students' misunderstanding of the evolutionary concepts being taught. These conceptions can often be discovered and addressed. We also attend to concerns about coverage of course content and the influence of religious beliefs, and provide helpful strategies to improve college-level teaching of evolution.  相似文献   

9.
The aim of this study was to design and evaluate an inquiry- and activity-based learning unit for the classroom that uses biological collections to teach key evolutionary concepts and to support the understanding and appreciation of the work of a museum. The unit consisted of three parts that focused on the most important tasks of museums: collecting and conserving, researching and exhibiting. The students created their own collection, performed research surrounding it and then designed an exhibition. Seventy-six secondary sixth- and seventh-grade students participated in the testing of the prototype unit. For evaluation, we carried out a pre-/post-test design using a questionnaire that assessed content knowledge and learning enjoyment. The mean knowledge score of the post-test indicated significant learning gains compared to the pre-test results. The test on learning enjoyment showed best mean values for actions that included the collection, compared to results of the theoretical parts of the unit. This approach demonstrates that the learning unit offers the opportunity to experience the tasks of a museum at first hand and to acquire knowledge about evolutionary science and evolutionary principles.  相似文献   

10.
Fifty years after Ehrlich and Raven's seminal paper, the idea of co‐evolution continues to grow as a key concept in our understanding of organic evolution. This concept has not only provided a compelling synthesis between evolutionary biology and community ecology, but has also inspired research that extends beyond its original scope. In this article, we identify unresolved questions about the co‐evolutionary process and advocate for the integration of co‐evolutionary research from molecular to interspecific interactions. We address two basic questions: (i) What is co‐evolution and how common is it? (ii) What is the unit of co‐evolution? Both questions aim to explore the heart of the co‐evolutionary process. Despite the claim that co‐evolution is ubiquitous, we argue that there is in fact little evidence to support the view that reciprocal natural selection and coadaptation are common in nature. We also challenge the traditional view that co‐evolution only occurs between traits of interacting species. Co‐evolution has the potential to explain evolutionary processes and patterns that result from intra‐ and intermolecular biochemical interactions within cells, intergenomic interactions (e.g. nuclear‐cytoplasmic) within species, as well as intergenomic interactions mediated by phenotypic traits between species. Research that bridges across these levels of organization will help to advance our understanding of the importance of the co‐evolutionary processes in shaping the diversity of life on Earth.  相似文献   

11.
Natural history museums area at a turning point in their history. To play a central role in research on biodiversity, they must change their mode of operation and public image. Collections have grown in a haphazard manner, depending on the interests and preferences of successive curators. There is an urgent need to create international networks and standard practices among museums, to meet the challenge of the biodiversity crisis.  相似文献   

12.
In North America, public understanding and acceptance of evolution is alarmingly low. Moreover, acceptance rates are declining, and studies suggest that even students who have taken courses in evolution have the same misunderstandings as the general public. These data signal deficiencies in our educational system and provide a “call to arms” to improve how evolution is taught. Many studies show that student education can be improved by replacing lecture-based pedagogy with active learning approaches—where the role of students changes from passive note taking to active problem solving. Here, we describe changes made to a second-year undergraduate evolution course to facilitate a shift to active learning and improve student understanding of evolution. First, lectures were used only sparingly and were largely replaced by problem-solving activities. Second, standard textbooks were replaced by “popular” books applying evolutionary thinking to topics students encounter on a daily basis. Lastly, predefined laboratory exercises were replaced by student-designed and implemented research projects. These changes led to increased student engagement and enjoyment, improved understanding of evolution and ability to apply evolutionary thinking to biological problems, and increased student recognition that evolutionary thinking is important not only in the classroom but also in their daily lives.  相似文献   

13.
Cancer therapy selects for cancer cells resistant to treatment, a process that is fundamentally evolutionary. To what extent, however, is the evolutionary perspective employed in research on therapeutic resistance and relapse? We analyzed 6,228 papers on therapeutic resistance and/or relapse in cancers and found that the use of evolution terms in abstracts has remained at about 1% since the 1980s. However, detailed coding of 22 recent papers revealed a higher proportion of papers using evolutionary methods or evolutionary theory, although this number is still less than 10%. Despite the fact that relapse and therapeutic resistance is essentially an evolutionary process, it appears that this framework has not permeated research. This represents an unrealized opportunity for advances in research on therapeutic resistance.  相似文献   

14.
The introduction of novel phenotypic structures is one of the most significant aspects of organismal evolution. Yet the concept of evolutionary novelty is used with drastically different connotations in various fields of research, and debate exists about whether novelties represent features that are distinct from standard forms of phenotypic variation. This article contrasts four separate uses for novelty in genetics, population genetics, morphology, and behavioral science, before establishing how novelties are used in evolutionary developmental biology (EvoDevo). In particular, it is detailed how an EvoDevo-specific research approach to novelty produces insight distinct from other fields, gives the concept explanatory power with predictive capacities, and brings new consequences to evolutionary theory. This includes the outlining of research strategies that draw attention to productive areas of inquiry, such as threshold dynamics in development. It is argued that an EvoDevo-based approach to novelty is inherently mechanistic, treats the phenotype as an agent with generative potential, and prompts a distinction between continuous and discontinuous variation in evolutionary theory.  相似文献   

15.
Louise S. Mead 《Evolution》2009,2(2):310-314
A common misconception of evolutionary biology is that it involves a search for “missing links” in the history of life. Relying on this misconception, antievolutionists present the supposed absence of transitional forms from the fossil record as evidence against evolution. Students of biology need to understand that evolution is a branching process, paleontologists do not expect to find “missing links,” and evolutionary research uses independent lines of evidence to test hypotheses and make conclusions about the history of life. Teachers can facilitate such learning by incorporating cladistics and tree-thinking into the curriculum and using evograms to focus on important evolutionary transitions.  相似文献   

16.
The evolution of cooperation among animals has posed a major problem for evolutionary biologists, and despite decades of research into avian cooperative breeding systems, many questions about the evolution of their societies remain unresolved. A review of the kin structure of avian societies shows that a large majority live in kin-based groups. This is consistent with the proposed evolutionary routes to cooperative breeding via delayed dispersal leading to family formation, or limited dispersal leading to kin neighbourhoods. Hypotheses proposed to explain the evolution of cooperative breeding systems have focused on the role of population viscosity, induced by ecological/demographic constraints or benefits of philopatry, in generating this kin structure. However, comparative analyses have failed to generate robust predictions about the nature of those constraints, nor differentiated between the viscosity of social and non-social populations, except at a coarse level. I consider deficiencies in our understanding of how avian dispersal strategies differ between social and non-social species, and suggest that research has focused too narrowly on population viscosity and that a broader perspective that encompasses life history and demographic processes may provide fresh insights into the evolution of avian societies.  相似文献   

17.
丝氨酸蛋白酶超家族分子结构进化研究   总被引:5,自引:0,他引:5  
采用刚体结构比较法进行蛋白质的结构比较,根据结构比较分数构建分子进化树, 研究丝氨酸蛋白酶超家族分子的进化规律。对分子进化树进行了一些初步分析,得到了一些有意义的结果。根据蛋白质的进化,可以比较精确的确定某物种的进化地位,对于物种的分类具有重要意义。通过对超家族分子进化的研究可以了解蛋白质超家族不同蛋白质之间的亲缘关系和蛋白质之间的进化差异,对于蛋白质工程分子设计提供帮助,对蛋白质结构预测具有一定意义  相似文献   

18.
Big, beautiful organisms are useful for biological education, increasing evolution literacy, and biodiversity conservation. But if educators gloss over the ubiquity of streamlined and miniaturized organisms, they unwittingly leave students and the public vulnerable to the idea that the primary evolutionary plot of every metazoan lineage is “progressive” and "favors" complexity. We show that simple, small, and intriguingly repulsive invertebrate animals provide a counterpoint to misconceptions about evolution. Our examples can be immediately deployed in biology courses and outreach. This context emphasizes that chordates are not the pinnacle of evolution. Rather, in the evolution of animals, miniaturization, trait loss, and lack of perfection are at least as frequent as their opposites. Teaching about invertebrate animals in a “tree thinking” context uproots evolution misconceptions (for students and the public alike), provides a mental scaffold for understanding all animals, and helps to cultivate future ambassadors and experts on these little‐known, weird, and fascinating taxa.  相似文献   

19.
Harrison F  Buckling A 《PloS one》2011,6(2):e17254
Understanding the ecological, evolutionary and genetic factors that affect the expression of cooperative behaviours is a topic of wide biological significance. On a practical level, this field of research is useful because many pathogenic microbes rely on the cooperative production of public goods (such as nutrient scavenging molecules, toxins and biofilm matrix components) in order to exploit their hosts. Understanding the evolutionary dynamics of cooperation is particularly relevant when considering long-term, chronic infections where there is significant potential for intra-host evolution. The impact of responses to non-social selection pressures on social evolution is arguably an under-examined area. In this paper, we consider how the evolution of a non-social trait--hypermutability--affects the cooperative production of iron-scavenging siderophores by the opportunistic human pathogen Pseudomonas aeruginosa. We confirm an earlier prediction that hypermutability accelerates the breakdown of cooperation due to increased sampling of genotypic space, allowing mutator lineages to generate non-cooperative genotypes with the ability to persist at high frequency and dominate populations. This may represent a novel cost of hypermutability.  相似文献   

20.
Kevin Padian 《Evolution》2010,3(2):206-214
If the American public understood what is actually known about the major evolutionary transitions in the history of life and how we know about them, uncertainty about evolution would drop precipitously, creationist arguments would fall on deaf ears, and public education in biology would make much more sense than it now does. Macroevolution must take a much more prominent place in K-12 science teaching. To do so, a curriculum must be redeveloped at both K-12 and college levels, so that preparation in macroevolution is a required part of K-12 biology preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号