首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion between viral and host cell membranes is the initial step of human immunodeficiency virus infection and is mediated by the gp41 protein, which is embedded in the viral membrane. The ∼ 20-residue N-terminal fusion peptide (FP) region of gp41 binds to the host cell membrane and plays a critical role in fusion catalysis. Key gp41 fusion conformations include an early pre-hairpin intermediate (PHI) characterized by extended coiled-coil structure in the region C-terminal of the FP and a final hairpin state with compact six-helix bundle structure. The large “N70” (gp41 1-70) and “FP-Hairpin” constructs of the present study contained the FP and respectively modeled the PHI and hairpin conformations. Comparison was also made to the shorter “FP34” (gp41 1-34) fragment. Studies were done in membranes with physiologically relevant cholesterol content and in membranes without cholesterol. In either membrane type, there were large differences in fusion function among the constructs with little fusion induced by FP-Hairpin, moderate fusion for FP34, and very rapid fusion for N70. Overall, our findings support acceleration of gp41-induced membrane fusion by early PHI conformation and fusion arrest after folding to the final six-helix bundle structure. FP secondary structure at Leu7 of the membrane-associated constructs was probed by solid-state nuclear magnetic resonance and showed populations of molecules with either β-sheet or helical structure with greater β-sheet population observed for FP34 than for N70 or FP-Hairpin. The large differences in fusion function among the constructs were not obviously correlated with FP secondary structure. Observation of cholesterol-dependent FP structure for fusogenic FP34 and N70 and cholesterol-independent structure for non-fusogenic FP-Hairpin was consistent with membrane insertion of the FP for FP34 and N70 and with lack of insertion for FP-Hairpin. Membrane insertion of the FP may therefore be associated with the early PHI conformation and FP withdrawal with the final hairpin conformation.  相似文献   

2.
The HIV gp41 protein mediates fusion with target host cells. The region primarily involved in directing fusion, the fusion peptide (FP), is poorly understood at the level of structure and function due to its toxic effect in expression systems. To overcome this, we used a synthetic approach to generate the N70 construct, whereby the FP is stabilized in context of the adjacent auto oligomerization domain. The amide I profile of unlabeled N70 in membranes reveals prominent alpha-helical contribution, along with significant beta-structure. By truncating the N terminus (FP region) of N70, beta-structure is eliminated, suggesting that the FP adopts a beta-structure in membranes. To assess this directly, (13)C Fourier-transformed infra-red analysis was carried out to map secondary structure of the 16 N-terminal hydrophobic residues of the fusion peptide (FP16). The (13)C isotope shifted absorbance of the FP was filtered from the global secondary structure of the 70 residue construct (N70). On the basis of the peak shift induced by the (13)C-labeled residues of FP16, we directly assign beta-sheet structure in ordered membranes. A differential labeling scheme in FP16 allows us to distinguish the type of beta-sheet structure as parallel. Dilution of each FP16-labeled N70 peptide, by mixing with unlabeled N70, shows directly that the FP16 beta-strand region self-assembles. We discuss our structural findings in the context of the prevailing gp41 fusion paradigm. Specifically, we address the role of the FP region in organizing supramolecular gp41 assembly, and we also discuss the mechanism by which exogenous, free FP constructs inhibit gp41-induced fusion.  相似文献   

3.
Wexler-Cohen Y  Sackett K  Shai Y 《Biochemistry》2005,44(15):5853-5861
The gp41 glycoprotein of HIV-1 is considered to be responsible for the actual fusion process between the virus and the host membranes. According to a prevailing model, gp41 trimer organization, directed by the N-terminal coiled-coil region (NHR), is essential for steps involved in the actual merging of viral and cellular membranes. This study addresses a major question: Is the specific sequence of the NHR obligatory for the fusion process, or can it be replaced by distant coiled coils that form different oligomeric states in solution? For this purpose we synthesized three known GCN4 coiled-coil mutants that oligomerize in solution into either dimers, trimers, or tetramers. These peptides were chemically ligated to the fusion peptide thereby creating three chimera peptides with different oligomeric tendencies in solution. These peptides were investigated, together with the 70-mer wild-type peptide (N70), regarding their structure in solution and membrane by using circular dichroism (CD) and FTIR spectroscopies, their ability to induce vesicle fusion, and their ability to bind phospholipid membranes by using surface plasmon resonance (SPR). Our results suggest that local assembly of fusion peptides, facilitated by coiled-coil oligomers, increases lipid mixing ability, probably by facilitating stronger binding of the fusion peptides to the opposing membrane as revealed by SPR. However, N70 is significantly more active than the other chimeras. Overall, the data indicate a correlation between the distinct conformation of N70 in solution and in membranes and its enhanced lipid mixing relative to the GCN4 chimeras.  相似文献   

4.
Native proteins exhibit precise geometric packing of atoms in their hydrophobic interiors. Nonetheless, controversy remains about the role of core side-chain packing in specifying and stabilizing the folded structures of proteins. Here we investigate the role of core packing in determining the conformation and stability of the Lpp-56 trimerization domain. The X-ray crystal structures of Lpp-56 mutants with alanine substitutions at two and four interior core positions reveal trimeric coiled coils in which the twist of individual helices and the helix-helix spacing vary significantly to achieve the most favored superhelical packing arrangement. Introduction of each alanine "layer" into the hydrophobic core destabilizes the superhelix by 1.4 kcal mol(-1). Although the methyl groups of the alanine residues pack at their optimum van der Waals contacts in the coiled-coil trimer, they provide a smaller component of hydrophobic interactions than bulky hydrophobic side-chains to the thermodynamic stability. Thus, specific side-chain packing in the hydrophobic core of coiled coils are important determinants of protein main-chain conformation and stability.  相似文献   

5.
HIV-1 envelope glycoprotein transmembrane subunit gp41 play a critical role in the fusion of viral and target cell membranes. The gp41 C-terminal heptad repeat region interacts with the N-terminal coiled-coil region to form a six-stranded core structure. Peptides derived from gp41 C-terminal heptad repeat region (C-peptides) are potent HIV-1 entry inhibitors by binding to gp41 N-terminal coiled-coil region. Most recently, we have identified two small organic compounds that inhibit HIV-1-mediated membrane fusion by blocking the formation of gp41 core. These two active compounds contain both hydrophobic and acidic groups while the inactive compounds only have hydrophobic groups. Analysis by computer modeling indicate that the acidic groups in the active compounds can form salt bridge with Lys 574 in the N-terminal coiled-coil region of gp41. Asp 632 in a C-peptide can also form a salt bridge with Lys 574. Replacement of Asp 632 with positively charged residues or hydrophobic residues resulted in significant decrease of HIV-1 inhibitory activity. These results suggest that a salt bridge between an N-terminal coiled coil of the gp41 and an antiviral agent targeted to the gp41 core is important for anti-HIV-1 activity.  相似文献   

6.
Sackett K  Shai Y 《Biochemistry》2002,41(14):4678-4685
For many different enveloped viruses the crystal structure of the fusion protein core has been established. A striking conservation in the tertiary and quaternary arrangement of these core structures is repeatedly revealed among members of diverse families. It has been proposed that the primary role of the core involves structural rearrangements which facilitate apposition between viral and target cell membranes. Forming the internal trimeric coiled coil of the core, the N-terminal heptad repeat (NHR) of HIV-1 gp41 was suggested to have additional roles, due to its ability to bind biological membranes. The NHR is adjacent to the N-terminal hydrophobic fusion peptide (FP), which alone can fuse biological membranes. To investigate the role of the NHR in membrane fusion, we synthesized and functionally characterized HIV-1 gp41 peptides corresponding to the FP and NHR alone, as well as continuous peptides made of both FP and NHR (wild type and mutant). We show here that a consecutive, 70-residue peptide consisting of both the FP and NHR (gp41/1-70) has dramatic fusogenic properties. The effect of including the complete NHR, as compared to shorter 23-, 33-, or 52-residue N-terminal peptides, is illustrated by a leap in lipid mixing of phosphatidylcholine (PC) large unilamellar vesicles (LUV) and clearly delineates the synergistic role of the NHR in the fusion event. Furthermore, a mutation in the NHR that renders the virus noninfectious is reflected by a significant reduction in in vitro lipid mixing induced by the mutant, gp41/1-70 (I62D). Additional spectroscopic studies, characterizing membrane binding and apposition induced by the peptides, help to clarify the role of the NHR in membrane fusion.  相似文献   

7.
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~ 20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not well characterized in large gp41 constructs that model the gp41 state at different times during fusion. This paper describes solid-state NMR (SSNMR) studies of FP structure in a membrane-associated construct (FP-Hairpin), which likely models the final fusion state thought to be thermostable trimers with six-helix bundle structure in the region C-terminal of the FP. The SSNMR data show that there are populations of FP-Hairpin with either α helical or β sheet FP conformation. For the β sheet population, measurements of intermolecular 13C-13C proximities in the FP are consistent with a significant fraction of intermolecular antiparallel β sheet FP structure with adjacent strand crossing near L7 and F8. There appears to be negligible in-register parallel structure. These findings support assembly of membrane-associated gp41 trimers through interleaving of N-terminal FPs from different trimers. Similar SSNMR data are obtained for FP-Hairpin and a construct containing the 70 N-terminal residues of gp41 (N70), which is a model for part of the putative pre-hairpin intermediate state of gp41. FP assembly may therefore occur at an early fusion stage. On a more fundamental level, similar SSNMR data are obtained for FP-Hairpin and a construct containing the 34 N-terminal gp41 residues (FP34) and support the hypothesis that the FP is an autonomous folding domain.  相似文献   

8.
To address the structure-function relationship of discrete regions within the gp41 ectodomain, 70-residue peptide constructs corresponding to the N-terminal subdomain of the HIV-1 gp41 ectodomain were examined in a membrane-associated context. These fragments encompass both fusion peptide (FP) and N-terminal heptad repeat (NHR) regions, and model the N-terminal half of the pre-hairpin intermediate (PHI), which is believed to be the target of the potent entry inhibitor DP-178, recently approved by the FDA. Using mutants, we attempted to map the structural organization of the N-terminal subdomain. Our results suggest that the N-terminal subdomain contains two discrete structural regions: the FP adopts a beta-sheet conformation and the NHR is alpha-helical. This structural make-up is essential for fusogenic function, since loss of function mutants exhibit both a significant reduction in region-specific secondary structure as well as significant impairment in lipid mixing of large unilamellar vesicles. Our results, delineating membrane-associated structure of the FP region differ from previous ones by inclusion of the autonomous oligomerization domain (NHR), which likely contributes to stabilization of the FP structure. Correspondingly, the alpha-helical structure for the NHR, in context of the FP, correlates with structural predictions for this region in both the hairpin and PHI conformations during fusion. Based on our results, we postulate how oligomerization of regions in this sub-domain is essential for fusion pore formation.  相似文献   

9.
The gp41 envelope protein of human immunodeficiency virus type 1 (HIV-1) contains an alpha-helical core structure responsible for mediating membrane fusion during viral entry. Recent studies suggest that a conserved hydrophobic cavity in the coiled coil of this core plays a distinctive structural role in maintaining the fusogenic conformation of the gp41 molecule. Here we investigated the importance of this cavity in determining the structure and biological activity of the gp41 core by using the N34(L6)C28 model. The high-resolution crystal structures of N34(L6)C28 of two HIV-1 gp41 fusion-defective mutants reveal that each mutant sequence is accommodated in the six-helix bundle structure by forming the cavity with different sets of atoms. Remarkably, the mutant N34(L6)C28 cores are highly effective inhibitors of HIV-1 infection, with 5- to 16-fold greater activity than the wild-type molecule. The enhanced inhibitory activity by fusion-defective mutations correlates with local structural perturbations close to the cavity that destabilize the six-helix bundle. Taken together, these results indicate that the conserved hydrophobic coiled-coil cavity in the gp41 core is critical for HIV-1 entry and its inhibition and provides a potential antiviral drug target.  相似文献   

10.
The amino-terminal region within the HIV-1 gp41 aromatic-rich pretransmembrane domain is an amphipathic-at-interface sequence (AIS). AIS is highly conserved between different viral strains and isolates and recognized by the broadly neutralizing 2F5 antibody. The atomic structure of the native Fab2F5-bound AIS appears to involve a nonhelical extended region and a beta-turn structure. We previously described how an immunogenic complex forms, based on the stereospecific interactions between AIS and the gp41 amino-terminal fusion peptide (FP). Here, we have analyzed the structure generated by these interactions using synthetic hybrids containing AIS and FP sequences connected through flexible tethers. The monoclonal 2F5 antibody recognized FP-AIS hybrid sequences with an apparently higher affinity than the linear AIS. Indeed, these hybrids exhibited a weaker capacity to destabilize membranes than FP alone. A combined structural analysis, including circular dichroism, infrared spectroscopy, and two-dimensional infrared correlation spectroscopy, revealed the existence of specific conformations in FP-AIS hybrids, predominantly involving beta-turns. Thermal denaturation studies indicated that FP stabilizes the nonhelical folded AIS structure. We propose that the assembly of the FP-AIS complex may act as a kinetic trap in halting the capacity of FP to promote fusion.  相似文献   

11.
Experiments have shown that the ability of the HIV-1 virus to infect cells can be greatly diminished by deactivation of the N-terminal (fusion) peptide of its glycoprotein gp41. Deactivation can be achieved by the deletion of several amino acid residues, or replacement of a hydrophobic residue with a polar residue, to form mutant variants of the wild-type peptide. We report Monte Carlo simulation studies of a simplified peptide/membrane model, representing the interaction of an HIV-1 fusion peptide (FP) and four closely related mutagens with a lipid bilayer. In agreement with experimental results, we show that FP inserts deeply into the bilayer at approximately 40 degrees to the bilayer normal. We also show a previously unreported behavior of membrane peptides, namely their equilibrium partitioning between several distinct conformations within the bilayer. We quantify this partitioning behavior and characterize each conformation in terms of its geometry, energy, and entropy. The diminished ability of FP mutagens to hemolyse and aggregate red blood cells due to their partitioning into unfavorable conformations, is also discussed. Our analysis supports a negative curvature mechanism for red blood cell hemolysis by FP. We also suggest that the small repulsive forces between surface-adsorbed peptides in opposing membrane surfaces may block aggregation.  相似文献   

12.
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.  相似文献   

13.
Shu W  Liu J  Ji H  Radigen L  Jiang S  Lu M 《Biochemistry》2000,39(7):1634-1642
The HIV-1 gp41 envelope protein mediates membrane fusion that leads to virus entry into the cell. The core structure of fusion-active gp41 is a six-helix bundle in which an N-terminal three-stranded coiled coil is surrounded by a sheath of antiparallel C-terminal helices. A conserved glutamine (Gln 652) buried in this helical interface replaced by leucine increases HIV-1 infectivity. To define the basis for this enhanced membrane fusion activity, we investigate the role of the Gln 652 to Leu substitution on the conformation, stability, and biological activity of the N34(L6)C28 model of the gp41 ectodomain core. The 2.0 A resolution crystal structure of the mutant molecule shows that the Leu 652 side chains make prominent contacts with hydrophobic grooves on the surface of the central coiled coil. The Gln 652 to Leu mutation leads to a marginal stabilization of the six-helix bundle by -0.8 kcal/mol, evaluated from thermal unfolding experiments. Strikingly, the mutant N34(L6)C28 peptide is a potent inhibitor of HIV-1 infection, with 10-fold greater activity than the wild-type molecule. This inhibitory potency can be traced to the corresponding C-terminal mutant peptide that likely has greater potential to interact with the coiled-coil trimer. These results provide strong evidence that conserved interhelical packing interactions in the gp41 core are important determinants of HIV-1 entry and its inhibition. These interactions also offer a test-bed for the development of more potent analogues of gp41 peptide inhibitors.  相似文献   

14.
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.  相似文献   

15.
Retrovirus entry into cells follows receptor binding by the surface-exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.  相似文献   

16.
Various fusion proteins from eukaryotes and viruses share structural similarities such as a coiled coil motif. However, compared with eukaryotic proteins, a viral fusion protein contains a fusion peptide (FP), which is an N-terminal hydrophobic fragment that is primarily involved in directing fusion via anchoring the protein to the target cell membrane. In various eukaryotic fusion proteins the membrane targeting domain is cysteine-rich and must undergo palmitoylation prior to the fusion process. Here we examined whether fatty acids can replace the FP of human immunodeficiency virus type 1 (HIV-1), thereby discerning between the contributions of the sequence versus hydrophobicity of the FP in the lipid-merging process. For that purpose, we structurally and functionally characterized peptides derived from the N terminus of HIV fusion protein - gp41 in which the FP is lacking or replaced by fatty acids. We found that fatty acid conjugation dramatically enhanced the capability of the peptides to induce lipid mixing and aggregation of zwitterionic phospholipids composing the outer leaflet of eukaryotic cell membranes. The enhanced effect of the acylated peptides on membranes was further supported by real-time atomic force microscopy (AFM) showing nanoscale holes in zwitterionic membranes. Membrane-binding experiments revealed that fatty acid conjugation did not increase the affinity of the peptides to the membrane significantly. Furthermore, all free and acylated peptides exhibited similar α-helical structures in solution and in zwitterionic membranes. Interestingly, the fusogenic active conformation of N36 in negatively charged membranes composing the inner leaflet of eukaryotic cells is β-sheet. Apparently, N-terminal heptad repeat (NHR) can change its conformation as a response to a change in the charge of the membrane head group. Overall, the data suggest an analogy between the eukaryotic cysteine-rich domains and the viral fusion peptide, and mark the hydrophobic nature of FP as an important characteristic for its role in lipid merging.  相似文献   

17.
Alpha-helical coiled coils play a crucial role in mediating specific protein-protein interactions. However, the rules and mechanisms that govern helix-helix association in coiled coils remain incompletely understood. Here we have engineered a seven heptad "Phe-zipper" protein (Phe-14) with phenylalanine residues at all 14 hydrophobic a and d positions, and generated a further variant (Phe-14(M)) in which a single core Phe residue is substituted with Met. Phe-14 forms a discrete alpha-helical pentamer in aqueous solution, while Phe-14(M) folds into a tetrameric helical structure. X-ray crystal structures reveal that in both the tetramer and the pentamer the a and d side-chains interlock in a classical knobs-into-holes packing to produce parallel coiled-coil structures enclosing large tubular cavities. However, the presence of the Met residue in the apolar interface of the tetramer markedly alters its local coiled-coil conformation and superhelical geometry. Thus, short-range interactions involving the Met side-chain serve to preferentially select for tetramer formation, either by inhibiting a nucleation step essential for pentamer folding or by abrogating an intermediate required to form the pentamer. Although specific trigger sequences have not been clearly identified in dimeric coiled coils, higher-order coiled coils, as well as other oligomeric multi-protein complexes, may require such sequences to nucleate and direct their assembly.  相似文献   

18.
The HIV gp41 protein catalyzes fusion between HIV and target cell membranes. The fusion states of the gp41 ectodomain include early coiled-coil (CC) structure and final six-helix bundle (SHB) structure. The ectodomain has an additional N-terminal apolar fusion peptide (FP) sequence which binds to target cell membranes and plays a critical role in fusion. One approach to understanding gp41 function is study of vesicle fusion induced by constructs that encompass various regions of gp41. There are apparent conflicting literature reports of either rapid or no fusion of negatively charged vesicles by SHB constructs. These reports motivated the present study, which particularly focused on effects of pH because the earlier high and no fusion results were at pH 3.0 and 7.2, respectively. Constructs include “Hairpin,” which has SHB structure but lacks the FP, “FP-Hairpin” with FP + SHB, and “N70,” which contains the FP and part of the CC but does not have SHB structure. Aqueous solubility, membrane binding, and vesicle fusion function were measured at a series of pHs and much of the pH dependences of these properties were explained by protein charge. At pH 3.5, all constructs were positively charged, bound negatively charged vesicles, and induced rapid fusion. At pH 7.0, N70 remained positively charged and induced rapid fusion, whereas Hairpin and FP-Hairpin were negatively charged and induced no fusion. Because viral entry occurs near pH 7 rather than pH 3, our results are consistent with fusogenic function of early CC gp41 and with fusion arrest by final SHB gp41.  相似文献   

19.
The gp41 envelope protein mediates entry of human immunodeficiency virus type 1 (HIV-1) into the cell by promoting membrane fusion. The crystal structure of a gp41 ectodomain core in its fusion-active state is a six-helix bundle in which a N-terminal trimeric coiled coil is surrounded by three C-terminal outer helices in an antiparallel orientation. Here we demonstrate that the N34(L6)C28 model of the gp41 core is stabilized by interaction with the ionic detergent sodium dodecyl sulfate (SDS) or the nonionic detergent n-octyl-beta-D-glucopyranoside (betaOG). The high resolution x-ray structures of N34(L6)C28 crystallized from two different detergent micellar media reveal a six-helix bundle conformation very similar to that of the molecule in water. Moreover, N34(L6)C28 adopts a highly alpha-helical conformation in lipid vesicles. Taken together, these results suggest that the six-helix bundle of the gp41 core displays substantial affinity for lipid bilayers rather than unfolding in the membrane environment. This characteristic may be important for formation of the fusion-active gp41 core structure and close apposition of the viral and cellular membranes for fusion.  相似文献   

20.
Kwok SC  Hodges RS 《Biopolymers》2004,76(5):378-390
The de novo design and biophysical characterization of three series of two-stranded alpha-helical coiled coils with different chain lengths are described. Our goal was to examine how increasing chain length would affect protein folding and stability when one or more heptad repeat(s) of K-A-E-A-L-E-G (gabcdef) was inserted into the central region of different coiled-coil host proteins. This heptad was designed to maintain the continuous 3-4 hydrophobic repeat of the coiled-coil host and introduce an Ala and Leu residue in the hydrophobic core at the a and d position, respectively, and a pair of stabilizing interchain ionic i to i' + 5 (g to e') interactions per heptad inserted. The secondary structures of the three series of disulfide-bridged polypeptides were studied by CD spectroscopy and their stabilities determined by chemical and thermal denaturation. The results showed that successive insertions of this heptad systematically decreased the stability of all the coiled coils studied regardless of the overall initial stability of the host coiled coil. These observations are in contrast to the generally accepted implication that the folding and stability of coiled coils are enhanced with increasing chain length. Our results imply that, in these examples where an Ala and Leu hydrophobic residue were introduced into the coiled-coil core per inserted heptad, there was still insufficient stability to overcome unfavorable entropy associated with chain length extension, even though the inserted heptad contained the most stabilizing hydrophobic residue (Leu) at position d and stabilizing ionic attractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号