首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe an assay to measure the extent of enzymatic unwinding of DNA by a DNA helicase. This assay takes advantage of the quenching of the intrinsic protein fluorescence of Escherichia coli SSB protein upon binding to ssDNA and is used to characterize the DNA unwinding activity of recBCD enzyme. Unwinding in this assay is dependent on the presence of recBCD enzyme and linear dsDNA, is consistent with the known properties of recBCD enzyme, and closely parallels other methods for measuring recBCD enzyme helicase activity. The effects of varying temperature, substrate concentrations, enzyme concentration, and mono- and divalent salt concentrations on the helicase activity of recBCD enzyme were characterized. The apparent Km values for recBCD enzyme helicase activity on linear M13 dsDNA molecules at 25 degrees C are 0.6 nM dsDNA molecules and 130 microM ATP, respectively. The apparent turnover number for unwinding is approximately 15 microM base pairs s-1 (microM recBCD enzyme)-1. When this rate is corrected for the observed stoichiometry of recBCD enzyme binding to dsDNA, kcat for helicase activity corresponds to an unwinding rate of approximately 250 base pairs of DNA s-1 (functional recBCD complex)-1 at 25 degrees C. At 37 degrees C, the apparent Km value for dsDNA molecules was the same as that at 25 degrees C, but the apparent turnover number became 56 microM base pairs s-1 (microM recBCD enzyme)-1 [or 930 base pairs s-1 (functional recBCD complex)-1 when corrected for observed stoichiometry]. With increasing NaCl concentration, kcat peaks at 100 mM, and the apparent Km value for dsDNA increases by 3-fold at 200 mM NaCl. In the presence of 5 mM calcium acetate, the apparent Km value is increased by 3-fold, and kcat decreased by 20-30%. We have also shown that recBCD enzyme molecules are able to catalytically unwind additional dsDNA substrates subsequent to initiation, unwinding, and dissociation from a previous dsDNA molecule.  相似文献   

2.
Two membrane-bound glutamate dehydrogenases were found in adult Dirofilaria immitis, an NAD-linked enzyme (EC 1.4.1.2) in the cytosol (C-GDH) and an enzyme equally reactive with NAD or NADP (EC 1.4.1.3) in the mitochondria (M-GDH). The cytosolic enzyme had a pH optimum of 7.8-8.0 and exhibited 30% more activity at 25 C than at 37 C (pH 8.0). The mitochondrial enzyme had a pH optimum at 8.4 and exhibited 27% more activity at 37 C than at 25 C (pH 8.4); it was also more sensitive to heat denaturation. Gel filtration of worm subfractions separated four peaks of C-GDH activity with molecular weights of approximately 610, 285, 180, and less than 100 thousand, and a single major peak of M-GDH activity with a molecular weight of about 335,000. When assayed at pH 8, 37 C, and 200 microM NADH, the Km for the substrate, alpha-ketoglutarate, was equivalent for the two enzymes, but the Km for ADP (activator) was five times greater for M-GDH. When the two enzymes were assayed at pH 8.0, 37 C, and 100 microM NADH, 1 mM ADP approximately doubled and 1 mM ATP halved the velocity observed for each enzyme with no effector present. Under these assay conditions AMP, IDP, GDP, and GTP had opposite effects on the reaction velocities for the two enzymes. When the assay conditions were changed, the effects of added purine nucleotides varied, even directionally. Addition of up to 5 mM glutamate (product) had no significant effect on C-GDH kinetics, nor on the substrate Km of M-GDH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The cytoplasmic leucyl-tRNA synthetases were purified from a wild-type Neurospora crassa and from a temperature-sensitive leucine-auxotroph (leu-5) mutant. A detailed steady-state kinetic study of the aminoacylation of the tRNALeu from N. crassa by the purified synthetases was carried out. These enzymes need preincubation with dithioerythritol and spermine before the assay in order to become fully active. The Kappm value for leucine was lowered by high ATP concentrations and correspondingly the Kappm,ATP was lowered by high leucine concentrations. The Kappm,Leu was lowered by high pH, a pK value of 6.7 (at 30 degrees C) was calculated for the ionizable group affecting the Km. At the concentrations of 2 mM ATP, 20 microM leucine, 0.3 microM tRNALeu, and pH 7 the apparent Km values were Kappm,ATP = 1.3 mM, Kappm,Leu = 49 microM and Kappm,tRNA = 0.15 microM. No essentially altered cytoplasmic leucyl-tRNA synthetase was produced by the temperature-sensitive mutant strain when kept at 37 degrees C. In none of these experiments could we find any difference between the wild-type enzyme and the enzyme from the mutant strain (whether grown at permissive temperature, 28 degrees C, or grown at permissive temperature for 24 h followed by growth at 37 degrees C). We therefore think that the small difference in the Km value for leucine of the wild-type and mutant enzyme, established in some earlier investigations, is not due to a difference in the kinetic properties of the enzyme molecules but to an external influence. The almost total lack of the mitochondrial leucyl-tRNA synthetase in the mutant strain besides the leucine autotrophy remains the only difference between the wild-type and mutant strains.  相似文献   

4.
A high-throughput screening protocol has been developed for Mycobacterium tuberculosis glutamine synthetase by quantitative estimation of inorganic phosphate. The K(m) values determined at pH 6.8 are 22 mM for L-glutamic acid, 0.75 mM for NH(4)Cl, 3.25 mM for MgCl(2), and 2.5 mM for adenosine triphosphate. The K(m) value for glutamine is affected significantly by the increase in pH of assay buffer. At the saturating level of the substrate, the enzyme activity at pH 6.8 and 25 degrees C is found to be linear up to 3 h. The reduction of enzyme activity is negligible even in presence of 10% DMSO. The Z' factor and signal-to-noise ratio are found to be 0.75 and 6.18, respectively, when the enzyme is used at 62.5 microg/ml concentration. The IC(50) values obtained at pH 6.8 for both L-methionine S-sulfoximine and DL-phosphothriacin are 500 microM and 30 microM, respectively, which is lowest compared to the values obtained at other pH levels. The Beckman Coulter high-throughput screening platform was found to take 5 h 9 min to complete the screening of 60 plates. For each assay plate, a replica plate is used to normalize the data. Screening of 1164 natural product fractions/extracts and synthetic molecules from an in-house library was able to identify 12 samples as confirmed hits. Altogether, the validation data from screening of a small set of an in-house library coupled with Z' and signal-to-noise values indicate that the protocol is robust for high-throughput screening of a diverse chemical library.  相似文献   

5.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

6.
By use of a new computer-assisted u.v.-spectrophotometric assay method, the kinetic parameters of the reaction catalysed by Bacillus licheniformis 749/C beta-lactamase were re-examined and the mode of inhibition of the enzyme by compound PS-5, a novel beta-lactam antibiotic, was studied with benzylpenicillin as substrate. (1) The fundamental assay conditions for the determination of Km and V were examined in detail with benzylpenicillin as substrate. In 0.1 M-sodium/potassium phosphate buffer, pH 6.8, at 30 degrees C, initial substrate concentrations of benzylpenicillin above 0.7 mM were very likely to lead to substrate inhibition. The Km value of the enzyme for benzylpenicillin at initial concentrations from 1.96 to 0.07 mM was calculated to be 97-108 microM. (2) The Km values of the enzyme for 6-aminopenicillanic acid, ampicillin and cephaloridine were found to be 25, 154-161 and 144-161 microM respectively. (3) Compound PS-5 was virtually unattacked by Bacillus licheniformis 749/C beta-lactamase. (4) The activity of the enzyme was diminished by compound PS-5, to extents depending on the duration of incubation and the concentration of the inhibitor. The rate of inactivation of the enzyme by compound PS-5 followed first-order kinetics. (5) In an Appendix, a new computer-assisted u.v.-spectrophotometric enzyme assay method, in which a single reaction progress curve of time-absorbance was analysed by the integrated Michaelis-Menten equation, was devised for the accurate and precise determination of the kinetic constants of beta-lactamase. For conversion of absorbance readings into molar substrate concentrations, the initial or final absorbance reading that was independent of the reaction time was used as the basis of calculation. In calculation of Km and V three systematic methods of data combination were employed for finer analysis of the reaction progress curve. A list of the computer program named YF6TAIM is obtainable from the author on request or as Supplementary Publication SUP 50100 (12 pages) from the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., on the terms indicated in Biochem. J. (1978) 169, 5.  相似文献   

7.
We find that the rate of dsDNA-dependent ATPase activity is biphasic, with a fast component which represents the unwinding of the dsDNA and a slow component which results from the ssDNA-dependent ATPase activity of recBCD enzyme. Comparison of the ATPase and helicase activities permits evaluation of the efficiency of ATP hydrolysis during unwinding. This efficiency can be calculated from the maximum rates of ATPase and helicase activities and is found to range between 2.0 and 3.0 ATP molecules hydrolyzed per base pair of DNA unwound. The number of ATP molecules hydrolyzed per base pair unwound is not altered by temperature but does increase at low concentrations of DNA and high concentrations of sodium chloride and magnesium acetate. The apparent Km values for the DNA and ATP substrates of recBCD enzyme dsDNA-dependent ATPase activity at 25 degrees C were determined to be 0.13 nM DNA molecules and 85 microM ATP, respectively. The observed kcat value is approximately 45 microM ATP s-1 (microM recBCD enzyme)-1. If this rate is corrected for the measured stoichiometry of recBCD enzyme binding to dsDNA, the kcat for ATPase activity corresponds to an ATP hydrolysis rate of approximately 740 ATP molecules s-1 (functional recBCD complex)-1 at 25 degrees C.  相似文献   

8.
Preincubation of the oxidized form of the flavoenzyme mercuric reductase with the reducing substrate, NADPH, or with a high concentration of cysteine (30 mM) results in a substantial increase of the catalytic activity as measured in a standard spectrophotometric assay. Also NADH has some activating effect but NADP+ or EDTA have no effect. In the presence of 1 mM cysteine only one equivalent of NADPH per FAD seems to be required for full activation which occurs after an incubation time of about 10 min. Activated mercuric reductase appears to be stable under anaerobic conditions but eventually returns to the original level of activity in the presence of oxygen. The activated state seems to be stabilized by 1 mM cysteine. Activation of mercuric reductase does not seem to be correlated with a change in the number of reactive thiol groups. The chemical nature of the activation process is not yet understood. Stopped-flow studies have shown that the nonactivated enzyme is practically inactive prior to contact with the substrates. The enzyme is gradually activated during the assay. The kinetics of activation of the 'native' enzyme is biphasic but 'clipped' enzyme, lacking an 85-residue N-terminal domain, is activated in a single first-order process. The progress curves obtained with preactivated enzyme are approximately exponential even at saturating concentrations of NADPH (Km = 0.4 microM at 25 degrees C, pH 7.3) and Hg2+ (Km = 3.2 microM in the presence of 1 mM cysteine). The initial rates yield kcat values of about 13 s-1 per FAD molecule (25 degrees C, pH 7.3). We find no evidence for a thiol-dependent change from a rapid to a slow kinetic phase. The shape of the progress curves presumably depends on product inhibition, but NADP+ is not a sufficiently effective inhibitor to explain the effect fully.  相似文献   

9.
The activation of docosahexaenoic acid by rat brain microsomes was studied using an assay method based on the extraction of unreacted [1-14C]docosahexaenoic acid and the insolubility of [1-14C]docosahexaenoyl-CoA in heptane. This reaction showed a requirement for ATP, CoA, and MgCl2 and exhibited optimal activity at pH 8.0 in the presence of dithiothreitol and when incubated at 45 degrees C. The apparent Km values for ATP (185 microM), CoA (4.88 microM), MgCl2 (555 microM) and [1-14C]docosahexaenoic acid (26 microM) were determined. The presence of bovine serum albumin or Triton X-100 in the incubation medium caused a significant decrease in the Km and Vm values for [1-14C]docosahexaenoic acid. The enzyme was labile at 45 degrees C (t1/2:3.3 min) and 37 degrees C (t1/2:26.5 min) and lost 36% of its activity after freezing and thawing. The transition temperature (Tc) obtained from Arrhenius plot was 27 degrees C with the activation energies of 74 kJ/mol between 0 degrees C and 27 degrees C and 30 kJ/mol between 27 degrees C and 45 degrees C. [1-14C]Palmitic acid activation in rat brain and liver microsomes showed apparent Km values of 25 microM and 29 microM respectively, with V values of 13 and 46 nmol X min-1 X mg protein-1. The presence of Triton X-100 (0.05%) in the incubation medium enhanced the V value of the liver enzyme fourfold without affecting the Km value. Brain palmitoyl-CoA synthetase, on the other hand, showed a decreased Km value in the presence of Triton X-100 with unchanged V. The Tc obtained were 25 degrees C and 28 degrees C for brain and liver enzyme with an apparent activation energy of 109 and 24 kJ/mol below and above Tc for brain enzyme and 86 and 3.3 kJ/mol for liver enzyme. The similar results obtained for the activation of docosahexaenoate and palmitate in brain microsomes suggest the possible existence of a single long-chain acyl-CoA synthetase. The differences observed in the activation of palmitate between brain and liver microsomes may be due to organ differences. Fatty acid competition studies showed a greater inhibition of labeled docosahexaenoic and palmitic acid activation in the presence of unlabeled unsaturated fatty acids. The Ki values for unlabeled docosahexaenoate and arachidonate were 38 microM and 19 microM respectively for the activation of [1-14C]docosahexaenoate. In contrast, the competition of unlabeled saturated fatty acids for activation of labeled docosahexaenoate is much less than that for activation of labeled palmitate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A manganese-containing catalase has been characterized from Thermoleophilum album NM, a gram-negative aerobic bacterium obligate for thermophily and n-alkane substrates. The level of catalase in cells was increased about ninefold by growth in the presence of paraquat (2.5 microM), a superoxide-generating toxicant. Superoxide dismutase levels were unaffected by this compound. The enzyme was purified from cultures grown in the presence of paraquat to greater than 95% homogeneity and had an Mr of 141,000. The enzyme was composed of four subunits, and each had an Mr of 34,000. There were 1.4 +/- 0.4 atoms of manganese present per subunit. The catalase had a Km for hydrogen peroxide of 15 mM and a Vmax of 11 mM/mg. Peroxidase activity, as measured with p-phenylenediamine, copurified with the catalase. Inhibitors of heme-catalase were weak inhibitors of the T. album enzyme. The optimum pH for catalase activity was 8 to 9. The enzyme was stable from pH 6.5 to 11 and retained activity at assay temperatures from 25 to 80 degrees C. The catalase was stable for 24 h of incubation at 60 degrees C.  相似文献   

11.
1. The rainbow trout (Oncorhynchus mykiss) CMPNeuAc:lactosylceramide alpha 2----3sialytransferase enzyme from RTH-149 cells has been characterized. 2. Transfer of sialic acid to lactosylceramide was optimal at a pH of 5.9, temperature of 25 degrees C, and in the pressure of 0.3% CF-54, 10 mM Mn2+, 0.1 M sodium cacodylate, and 2 mM ATP. 3. Golgi-rich membrane fractions of RTH-149 cells were found to be enriched in sialidase activity and as such the addition of 40 microM 2,3-dehydro-2-deoxy-N-acetylneuraminic acid was necessary to assay alpha 2----3sialyltransferase activity optimally. 4. Apparent Km for donor (CMPNeuAc) and acceptor (lactosylceramide) were found to be 243 microM and 34 microM, respectively. 5. The alpha 2----3sialyltransferase characterized was found to be primarily specific for lactosylceramide though minor activity with other glycolipid acceptors was observed. 6. The presence of another sialyltransferase with differing substrate specificity was noted. 7. Properties of this enzyme, compared to analogous mammalian enzymes, are discussed.  相似文献   

12.
The development of a reliable assay for human synovial fluid phospholipase A2 (HSF PLA2) is important for the kinetic characterization of the enzyme and for the identification of enzyme inhibitors. This enzyme behaves differently from other extracellular PLA2s in many standard phospholipase assays and is generally assayed using radiolabeled, autoclaved Escherichia coli as a substrate. We have now developed a nonradioactive, continuous, spectrophotometric assay for this enzyme that is adaptable for use with a microtiterplate reader and is suitable for screening enzyme inhibitors. The assay uses a thioester derivative of diheptanoyl phosphatidylcholine as a substrate, with which the enzyme displays a specific activity of about 25 mumol min-1 mg-1. The substrate concentration curve fits a Hill equation with an apparent Km of 500 microM and a Hill coefficient of two. The enzyme has a pH optimum of 7.5 in this assay and requires about 10 mM Ca2+ for maximal activity. The presence of 0.3 mM Triton X-100 was necessary to solubilize the substrate; however, higher concentrations of the detergent inhibited enzyme activity. Using this spectrophotometric assay, inhibition of HSF PLA2 by a thioether phosphonate phosphatidylethanolamine analog was observed with an IC50 of 18 microM.  相似文献   

13.
Human liver 1-aspartamido-beta-N-acetylglucosamine amidohydrolase (aspartylglucosylaminase, EC 3.5.1.26) was purified 17 500-fold to apparent homogeneity as judged from polyacrylamide-gel disc electrophoresis. A pH optimum of 7.7-9.0 was found. The Km value was pH- and temperature-dependent. At 37 degrees C and pH 7.7, Km was 0.16 mM and it increased to 0.29 at pH 6.0 and 0.23 at pH 9.0. At 25 degrees C and pH 7.7, a Km value of 0.99 mM was obtained. When the substrate concentration was varied, apparent Michaelis-Menten kinetics were obtained. p-Hydroxymercuribenzoate, glutathione or cysteine had no effect on the enzyme activity; 5 mM-N-acetylcysteine inhibited about 47% of the total enzyme activity. Apart from Cu2+, other bivalent ions were virtually ineffective at 1 mM. The kinetic study differentiates this enzyme from aspartylglucosylaminase from other sources.  相似文献   

14.
T J Wheeler  J D Whelan 《Biochemistry》1988,27(5):1441-1450
It has been claimed that the Km for infinite-cis uptake of glucose in human erythrocytes is so low that the carrier model for transport must be rejected. We redetermined this parameter for three experimental conditions and found instead that the Km values were in good agreement with the model. For each of a variety of cis glucose concentrations, cells were preequilibrated with various concentrations of glucose, and the apparent Km was determined as the intracellular concentration reducing the initial rate of net uptake by half. The dependence of the apparent Km values on the cis glucose was as predicted by the carrier model; the infinite-cis Km was determined from both this concentration dependence and the extrapolated value at infinite cis glucose. The resulting values were 15 mM for fresh blood at 0 degrees C, 39 mM for outdated blood at 0 degrees C, and 11 mM for outdated blood at 25 degrees C. Previous measurements of the Km at room temperature yielded values of 2-3 mM. These earlier studies used a time course procedure that indicated rapid changes in rates during the initial 10 s of uptake but did not directly measure such changes. We examined the uptake of 60 mM glucose at 20 degrees C into cells containing 0 and 5 mM glucose; rapid changes in rates were not observed in the first few seconds, and the time courses were more consistent with our higher Km values. Our new values, together with other initial rate measurements in the literature, support the adequacy of the carrier model to account for the kinetics of glucose transport in human erythrocytes.  相似文献   

15.
S X Lin  J P Shi  X D Cheng  Y L Wang 《Biochemistry》1988,27(17):6343-6348
A Blue Sephadex G-150 affinity column adsorbs the arginyl-tRNA synthetase of Escherichia coli K12 and purifies it with high efficiency. The relatively low enzyme content was conveniently purified by DEAE-cellulose chromatography, affinity chromatography, and fast protein liquid chromatography to a preparation with high activity capable of catalyzing the esterification of about 23,000 nmol of arginine to the cognate tRNA per milligram of enzyme within 1 min, at 37 degrees C, pH 7.4. The turnover number is about 27 s-1. The purification was about 1200-fold, and the overall yield was more than 30%. The enzyme has a single polypeptide chain of about Mr 70,000 and binds arginine and tRNA with 1:1 stoichiometry. For the aminoacylation reaction, the Km values at pH 7.4, 37 degrees C, for various substrates were determined: 12 microM, 0.9 mM, and 2.5 microM for arginine, ATP, and tRNA, respectively. The Km value for cognate tRNA is higher than those of most of the aminoacyl-tRNA synthetase systems so far reported. The ATP-PPi exchange reaction proceeds only in the presence of arginine-specific tRNA. The Km values of the exchange at pH 7.2, 37 degrees C, are 0.11 mM, 2.9 mM, and 0.5 mM for arginine, ATP, and PPi, respectively, with a turnover number of 40 s-1. The pH dependence shows that the reaction is favored toward slightly acidic conditions where the aminoacylation is relatively depressed.  相似文献   

16.
The Km of dopamine beta-hydroxylase for its cofactor, ascorbic acid, was determined in situ in primary cultures of bovine adrenomedullary chromaffin cells and in isolated chromaffin vesicles. A range of intravesicular ascorbate concentrations in chromaffin cell cultures (1.1-31.2 mM) was achieved by varying the number and concentration of ascorbate additions to the culture media. The rate of octopamine synthesis from tyramine displayed a Michaelis-Menten relationship with respect to ascorbate concentration and an apparent Km of dopamine beta-hydroxylase for ascorbate of 15.0 +/- 2.0 mM was determined. In isolated chromaffin vesicles, with an initial intravesicular ascorbate concentration of approximately 10 mM, ascorbate consumption during beta-hydroxylation occurred as a first order process. This indicated that dopamine beta-hydroxylase was not saturated at this initial ascorbate concentration. When isolated chromaffin vesicles were prepared with different intravesicular ascorbate concentrations, the rate of octopamine synthesis displayed a Michaelis-Menten relationship with respect to ascorbate with an apparent Km of 17.0 +/- 5.0 mM. Ascorbate consumption also occurred as a first order process in ascorbate-loaded chromaffin-vesicle ghosts which had initial ascorbate concentrations of approximately 30 mM but which were depleted of other small molecules such as catecholamines. These results indicate that the in situ Km of dopamine beta-hydroxylase for ascorbate (approximately 15 mM) is 25-fold higher than it is for the purified or partially purified enzyme assayed under optimal conditions in vitro (0.6 mM). The factor(s) which decreases the enzyme affinity for ascorbate, relative to in vitro, resides in the chromaffin vesicle interior and is also retained in chromaffin-vesicle ghosts. The mechanism of this effect remains to be determined. The Km value determined in these experiments is close to the estimated intravesicular ascorbate concentration of bovine chromaffin granules in vivo (4), suggesting that the availability of ascorbate could become a factor in regulating the rate of dopamine beta-hydroxylation.  相似文献   

17.
The cGMP analogue 8-(2-carboxymethylthio)-cGMP (CMT-cGMP) was synthesized and its binding to cGMP-dependent protein kinase (cGMP kinase) was studied. CMT-cGMP bound at 4 degrees C with an over 1400-fold higher affinity to site 1 than to site 2 of the native enzyme with apparent Kd values of 4.1 nM and 5.9 microM, respectively. The apparent selectivity for site 1 was about threefold less with the autophosphorylated enzyme and about sixfold with the catalytically active fragment of cGMP kinase. The apparent selectivity was confirmed by determination of the dissociation of [3H]cGMP from cGMP kinase in the presence of 1 microM CMT-cGMP at 4 degrees C. The apparent site 1 selectivity was 250-fold at 30 degrees C under the conditions of the phosphotransferase assay. The apparent Kd values were 47 nM and 11.7 microM for site 1 and 2, respectively. CMT-cGMP stimulated the phosphotransferase activity of native and autophosphorylated cGMP kinase with Ka values of about 80 nM. About 60% of the total catalytic rate of cGMP kinase was obtained in the presence of 1 microM CMT-cGMP and 0.13 mM Kemptide. The apparent Km values for ATP and Kemptide were not affected. However, CMT-cGMP activated the enzyme to the same level as cGMP when 1.3 mM Kemptide was present. CMT-cGMP and cGMP inhibited cAMP-stimulated autophosphorylation of cGMP kinase with IC50 values of 0.7 microM and 2 microM, respectively. Neither compound stimulated autophosphorylation of cGMP kinase by itself. These results indicate that CMT-cGMP binds with high preference to site 1 of cGMP kinase and that occupation of site 1 may lead to expression of a partial enzyme activity.  相似文献   

18.
Several small molecules identified by high-throughput screening (HTS) were evaluated for their ability to bind to a nonstructural protein 3 (NS3) helicase from hepatitis C virus (HCV). Equilibrium dissociation constants (K(d)'s) of the compounds for this helicase were determined using several techniques including an assay measuring the kinetics of isothermal enzyme denaturation at several concentrations of the test molecule. Effects of two nonhydrolyzable ATP analogs on helicase denaturation were measured as controls using the isothermal denaturation (ITD) assay. Two compounds, 4-(2,4-dimethylphenyl)-2,7,8-trimethyl-4,5-quinolinediamine and 2-phenyl-N-(5-piperazin-1-ylpentyl)quinazolin-4-amine, were identified from screening that inhibited the enzyme and had low micromolar dissociation constants for NS3 helicase in the ITD assay. Low micromolar affinity of the quinolinediamine to helicase was also confirmed by nuclear magnetic resonance experiments. Unfortunately, isothermal titration calorimetry (ITC) experiments indicated that a more water-soluble analog bound to the 47/23-mer oligonucleotide helicase substrate with low micromolar affinity as did the substituted quinazolinamine. There was no further interest in these templates as helicase inhibitors due to the nonspecific binding to enzyme and substrate. A combination of physical methods was required to discern the mode of action of compounds identified by HTS and remove undesirable lead templates from further consideration.  相似文献   

19.
The kinetics of beta-D-N-acetylhexosaminidase against GM2 ganglioside were examined. We used a crude preparation of rat liver as the enzyme source because purification of beta-D-N-acetylhexosaminidase results in a decrease in specific activity against GM2 ganglioside. Kinetic plots were not linear but showed a break. At substrate concentrations less than 50 microM the Vmax was 6 pmol GM2 hydrolyzed per hour per micromole 4-MU-GlcNAc hydrolyzed per hour (pmol GM2/mumol 4-MU-GlcNAc) and the Km was 5 microM.At substrate concentrations greater than 50 microM, the Vmax was 7 pmol GM2/mumol 4-MU-GlcNAc and the Km was 14 microM. The critical micelle concentration of GM2 ganglioside was 20-25 microM as determined by spectral shifts of the dye pinacyanol chloride in association with GM2, and 10-15 microM from electrical conductivity measurements which also showed the end of the monomer-micelle transition to occur at 40-50 microM GM2. The increasing excess of micellar substrate at greater than 50 microM GM2 explains the discontinuity in the kinetic plots. Sodium taurocholate had a critical micelle concentration of 9-11 mM using pinacyanol chloride and 2.5-3 mM using electrical conductivity. When included in the assay mixture at a concentration of 10 mM, sodium taurocholate produced a linear kinetic plot. This is probably due to the formation of mixed micelles of detergent and GM2 ganglioside. The Vmax was 200 pmol GM2/MUmol 4-MU-GlcNAc and the Km was 93 microM. The data suggest that ganglioside hydrolysis occurs more readily when the substrate is incorporated into a membrane-like environment.  相似文献   

20.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号