首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian fishes. The extremely high cholesterol/disaturated PL and cholesterol/PL ratios of surfactant extracted from tarpon and pirarucu bladders and the poor surface activity of tarpon surfactant are characteristics of the surfactant system in other fishes. Despite the paraphyletic phylogeny of the Osteichthyes, their surfactant is uniform in composition and may represent the vertebrate protosurfactant.  相似文献   

2.
Pacific tarpon (Megalops cyprinoides) use a modified gas bladder as an air-breathing organ (ABO). We examined changes in cardiac output (V(b)) associated with increases in air-breathing that accompany exercise and aquatic hypoxia. Juvenile (0.49 kg) and adult (1.21 kg) tarpon were allowed to recover in a swim flume at 27 degrees C after being instrumented with a Doppler flow probe around the ventral aorta to monitor V(b) and with a fibre-optic oxygen sensor in the ABO to monitor air-breathing frequency. Under normoxic conditions and in both juveniles and adults, routine air-breathing frequency was 0.03 breaths min(-1) and V(b) was about 15 mL min(-1) kg(-1). Normoxic exercise (swimming at about 1.1 body lengths s(-1)) increased air-breathing frequency by 8-fold in both groups (reaching 0.23 breaths min(-1)) and increased V(b) by 3-fold for juveniles and 2-fold for adults. Hypoxic exposure (2 kPa O2) at rest increased air-breathing frequency 19-fold (to around 0.53 breaths min(-1)) in both groups, and while V(b) again increased 3-fold in resting juvenile fish, V(b) was unchanged in resting adult fish. Exercise in hypoxia increased air-breathing frequency 35-fold (to 0.95 breaths min(-1)) in comparison with resting normoxic fish. While juvenile fish increased V(b) nearly 2-fold with exercise in hypoxia, adult fish maintained the same V(b) irrespective of exercise state and became agitated in comparison. These results imply that air-breathing during exercise and hypoxia can benefit oxygen delivery, but to differing degrees in juvenile and adult tarpon. We discuss this difference in the context of myocardial oxygen supply.  相似文献   

3.
The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO2) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO2 and swimming speeds. At slow speed (0.65 BL s−1), progressive aquatic hypoxia triggered the first breath at a mean PO2 of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO2 of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min−1, ABO PO2 was 10.9 kPa, breath volume was 23.8 ml kg−1, rate of oxygen uptake from the ABO was 1.19 ml kg−1 min−1, and oxygen uptake per breath was 2.32 ml kg−1. At the fastest experimental speed (2.4 BL s−1) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg−1 min−1, through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO2 (1.7–26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.  相似文献   

4.
Salmon catfish and tarpon occur in habitats that periodically become deficient in oxygen resulting in high mortalities of other fish species. The water-breathing catfish, Arius leptaspis, and the facultative air-breathing tarpon, Megalops cyprinoides, both have high haemoglobin and haematocrit, and the oxygen carrying capacity in the air-breather is exceptionally high (15.6+/-1.2 vol%). Iso-pH oxygen equilibria of the red blood cells at 25 degrees C revealed high affinity (P(50)=9 mmHg, pH 7.4) and co-operativity (n(50)>2.2, pH 7.4) in the catfish, and contrasted with low affinity (P(50)=32 mmHg, pH 7.4) and co-operativity (n(50) approximately 1) in the air-breathing tarpon. Oxygen binding was further distinguished by relative pH insensitivity (Bohr factor, ?=Deltalog P(50)/Deltalog pH=-0.22) in the catfish, compared with a significant Bohr effect in the tarpon (?=-0.96). The potential for modulation of haemoglobin-oxygen affinity was indicated by a high ratio of GTP to ATP in the erythrocytes of the catfish, whereas regulation in the tarpon appeared due to ATP alone. Differences in blood respiratory functions between the two species are likely to reflect reduced opportunity for activity under extreme hypoxia in the catfish.  相似文献   

5.
The evolution of air-breathing organs (ABOs) is associated not only with hypoxic environments but also with activity. This investigation examines the effects of hypoxia and exercise on the partitioning of aquatic and aerial oxygen uptake in the Pacific tarpon. The two-species cosmopolitan genus Megalops is unique among teleosts in using swim bladder ABOs in the pelagic marine environment. Small fish (58-620 g) were swum at two sustainable speeds in a circulating flume respirometer in which dissolved oxygen was controlled. For fish swimming at 0.11 m s(-1) in normoxia (Po2 = 21 kPa), there was practically no air breathing, and gill oxygen uptake was 1.53 mL kg(-0.67) min(-1). Air breathing occurred at 0.5 breaths min(-1) in hypoxia (8 kPa) at this speed, when the gills and ABOs accounted for 0.71 and 0.57 mL kg(-0.67) min(-1), respectively. At 0.22 m s(-1) in normoxia, breathing occurred at 0.1 breaths min(-1), and gill and ABO oxygen uptake were 2.08 and 0.08 mL kg(-0.67) min(-1), respectively. In hypoxia and 0.22 m s(-1), breathing increased to 0.6 breaths min(-1), and gill and ABO oxygen uptake were 1.39 and 1.28 mL kg(-0.67) min(-1), respectively. Aquatic hypoxia was therefore the primary stimulus for air breathing under the limited conditions of this study, but exercise augmented oxygen uptake by the ABOs, particularly in hypoxic water.  相似文献   

6.
A method for quickly assessing the relative proportion of compact myocardium in the ventricle of teleosts is introduced and used in juvenile Pacific tarpon Megalops cyprinoides , a member of the only air-breathing elopomorph teleost genus. The proportion of compact myocardium increased with body mass, reaching up to 60% of the ventricular mass. The finding for tarpon was a surprising discovery since recent literature has suggested that air breathing evolved primarily as means of supplying oxygen to the fish heart during activity. The present data, which represent the first quantitative assessment of the compact myocardium for any air-breathing fish, suggest that myocardial oxygen supply in the tarpon is supplemented by the coronary circulation associated with compact myocardium during exercise, while air breathing is important during aquatic hypoxia. Compact myocardium was also measured as a point of reference in an extant representative from a more ancient fish lineage than the elopomorphs, the water-breathing spiny dogfish Squalus acanthias and found to be only 9% of ventricular mass. In conclusion, the presence of a coronary circulation in extant elasmobranchs may mean that the coronary circulation evolved well before air breathing in fishes and, for tarpon at least, the coronary oxygen supply to the ventricular myocardium has not necessarily been superseded by air breathing.  相似文献   

7.
Tarpon have high resting or routine hematocrits (Hct) (37.6+/-3.4%) and hemoglobin concentrations (120.6+/-7.3 gl(-1)) that increased significantly following bouts of angling-induced exercise (51.9+/-3.7% and 142.8+/-13.5 gl(-1), respectively). Strenuous exercise was accompanied by an approximately tenfold increase in blood lactate and a muscle metabolite profile indicative of a high energy demand teleost. Routine blood values were quickly restored only when this facultative air-breathing fish was given access to atmospheric air. In vitro studies of oxygen transport capacity, a function of carrying capacity and viscosity, revealed that the optimal Hct range corresponded to that observed in fish under routine behaviour. During strenuous exercise however, further increase in viscosity was largely offset by a pronounced reduction in the shear-dependence of blood which conformed closely to an ideal Newtonian fluid. The mechanism for this behaviour of the erythrocytes appears to involve the activation of surface adrenergic receptors because pre-treatment with propranolol abolished the response. High levels of activity in tarpon living in hypoxic habitats are therefore supported by an elevated Hct with adrenergically mediated viscosity reduction, and air-breathing behaviour that enables rapid metabolic recovery.  相似文献   

8.
Swimming in a flume at reduced water pO2 resulted in muscle and blood lactate levels in Pacific tarpon Megalops cyprinoides that were significantly higher when fish did not have access to air. Blood glucose and haematological variables were unchanged throughout the regimes of exercise at two swimming speeds and hypoxia. Strenuous exercise with bouts of burst swimming, however, resulted in both high blood lactate and glucose, and perturbed haematological status with elevated haemoglobin and reduced mean cell-haemoglobin concentration. Post-exercise recovery was achieved through aquatic breathing rather than by air breathing. The air-breathing organ in Pacific tarpon therefore prolonged aerobic activity, but gill breathing was used to repay oxygen debt.  相似文献   

9.
The present study analyzes the respiratory responses of the neotropical air-breathing fish Hoplosternum littorale to graded hypoxia and increased sulfide concentrations. The oxygen uptake (VO2), critical O2 tension (PcO2), respiratory (fR) and air-breathing (fRA) frequencies in response to graded hypoxia were determined for fish acclimated to 28 degrees C. H. littorale was able to maintain a constant VO2 down to a PcO2 of 50 mm Hg, below which fish became dependent on the environmental O2 even with significant increases in fR. The fRA was kept constant around 1 breath h(-1) above 50 mm Hg and increased significantly below 40 mm Hg, reaching maximum values (about 4.5 breaths h(-1)) at 10 mm Hg. The lethality to sulfide concentrations under normoxic and hypoxic conditions were also determined along with the fRA. For the normoxic fish the sulfide lethal limit was about 70 microM, while in the hypoxic ones this limit increased to 87 muM. The high sulfide tolerance of H. littorale may be attributed to the air-breathing capability, which is stimulated by this compound.  相似文献   

10.
This study quantified the air-breathing frequency (ABf in breaths h–1) and gill ventilation frequency (Vf in ventilations min–1) of tarpon Megalops atlanticusas a function of PO2, temperature, pH, and sulphide concentration. Ten tarpon held at normoxia at 22–33°C without access to atmospheric oxygen survived for eight days, and seven survived for 14 days (at which point the experiment was terminated) suggesting that the species is a facultative, rather than an obligate, air breather. At temperatures of 29°C and below ABf was highest and Vf was lowest at low oxygen partial pressures. Tarpon appear to switch from aquatic respiration to air breathing at PO2levels of roughly 40 torr. The gills were the primary organ for oxygen uptake in normoxia, and the air-breathing organ the primary mechanism for oxygen uptake in hypoxia. At 33°C, both ABf and Vf were elevated but highly variable, regardless of PO2. There were no mortalities in tarpon exposed to total H2S concentrations of 0–232µM (0–150.9µM H2S); however, high sulfide concentrations resulted in very high ABf and Vf near zero. Vf was reduced when pH was acidic. We conclude that air breathing provides an effective means of coping with the environmental conditions that characterize the eutrophic ponds and sloughs that juvenile tarpon typically inhabit.  相似文献   

11.

Background

Predators can impact ecosystems through trophic cascades such that differential patterns in habitat use can lead to spatiotemporal variation in top down forcing on community dynamics. Thus, improved understanding of predator movements is important for evaluating the potential ecosystem effects of their declines.

Methodology/Principal Findings

We satellite-tagged an apex predator (bull sharks, Carcharhinus leucas) and a sympatric mesopredator (Atlantic tarpon, Megalops atlanticus) in southern Florida waters to describe their habitat use, abundance and movement patterns. We asked four questions: (1) How do the seasonal abundance patterns of bull sharks and tarpon compare? (2) How do the movement patterns of bull sharks and tarpon compare, and what proportion of time do their respective primary ranges overlap? (3) Do tarpon movement patterns (e.g., straight versus convoluted paths) and/or their rates of movement (ROM) differ in areas of low versus high bull shark abundance? and (4) Can any general conclusions be reached concerning whether tarpon may mitigate risk of predation by sharks when they are in areas of high bull shark abundance?

Conclusions/Significance

Despite similarities in diet, bull sharks and tarpon showed little overlap in habitat use. Bull shark abundance was high year-round, but peaked in winter; while tarpon abundance and fishery catches were highest in late spring. However, presence of the largest sharks (>230 cm) coincided with peak tarpon abundance. When moving over deep open waters (areas of high shark abundance and high food availability) tarpon maintained relatively high ROM in directed lines until reaching shallow structurally-complex areas. At such locations, tarpon exhibited slow tortuous movements over relatively long time periods indicative of foraging. Tarpon periodically concentrated up rivers, where tracked bull sharks were absent. We propose that tarpon trade-off energetic costs of both food assimilation and osmoregulation to reduce predation risk by bull sharks.  相似文献   

12.
13.
Plasma and tissue metabolite levels were measured in the air-breathing Channa maculata during acute and prolonged exposure to normoxic and hypoxic water. Exposure of the fish to hypoxic water (water oxygen partial pressure, PwO 2= 50 mmHg) for 1 h caused increases in plasma glucose and lactate, liver and brain lactate, liver a-amino acid, heart and brain alanine and brain succinate levels. The metabolic changes in heart, brain and muscle could only be detected when Pw O2 was 30 or 10 mmHg. Heart glycogen and liver lipid decreased during acute exposure. Prolonged exposure to hypoxic water ( Pw O2= 30 mmHg) for 3 days caused an increase in plasma glycerol and liver lactate dehydrogenase activity, and a depletion of glycogen store in all tissues investigated. However, metabolite levels which had been elevated during acute hypoxic exposure were observed to return to their normoxic values after prolonged exposure. It was concluded that anaerobic metabolism was triggered by acute exposure to hypoxic water. Prolonged exposure to hypoxic water induced a metabolic readjustment involving mobilisation of lipid and glycogen stores, which is probably a reflection of the high metabolic load of aerial respiration imposed on the fish during exposure to hypoxic water.  相似文献   

14.
15.
Lacking a propensity to emerge over the mud surface, the eel goby, Odontamblyopus lacepedii, survives low tide periods by continuously breathing air in burrows filled with hypoxic water. As with most marine air-breathing fishes, O. lacepedii does not possess an accessory air-breathing organ, but holds air in the buccal–opercular cavity. The present study aimed to clarify how the respiratory vasculature has been modified in this facultative air-breathing fish. Results showed that the gills apparently lacked structural modifications for air breathing, whereas the inner epithelia of the opercula were richly vascularized. Comparison with two sympatric gobies revealed that the density of blood capillaries within 10μm from the inner opercular epithelial surface in O. lacepedii (14.5 ± 3.0 capillaries mm−1; mean ± s.d., n = 3) was significantly higher than in the aquatic non-air-breathing Acanthogobius hasta (0.0 ± 0.0) but significantly lower than in the amphibious air-breathing mudskipper, Periophthalmus modestus (59.1 ± 8.5). The opercular capillary bed was supplied predominantly by the 1st efferent branchial arteries (EBA1) and drained by the opercular veins, which open into the anterior cardinal vein. Deep invaginations at the distal end of the EBA1 and the junction with EBA2 are suggestive of blood flow regulatory sites during breath-holding and apnoeic periods. It remains to be investigated how blood flow through the gills is maintained during breath holding when the buccal–opercular cavity is filled with air.  相似文献   

16.
Light and scanning electron microscopy of vascular replicas from the facultative air-breathing fish Heteropneustes fossilis show modifications in the macrocirculation of the respiratory organs and systemic circulation, whereas, gill microcirculation is similar to that found in typical water-breathing fish. Three and sometimes four ventral aortae arise directly from the bulbus. The most ventral vessel supplies the first pair of arches. Dorsal to this another aorta supplies the second gill arches, and a third, dorsal to, and larger than the other two, supplies the third and fourth arches and the air sacs. Occasionally a small vessel that may be the remnant of a primitive aortic arch arises from the first ventral aorta and proceeds directly to the mandibular region without perfusing gill tissue. The air sac is perfused by a large-diameter extension of the afferent branchial artery of the fourth gill arch and its circulation is in parallel with the gill arches. Blood drains from the air sac into the fourth arch epibranchial artery. A number of arteries also provide direct communication between the efferent air sac artery and the dorsal aorta. All four gill arches are well developed and contain respiratory (lamellar) and nonrespiratory (interlamellar and nutrient) networks common to gills of water-breathing fish. Air sac lamellae are reduced in size. The outer 30% of the air sac lamellar sinusoids are organized into thoroughfare channels; the remaining vasculature, normally embedded in the air sac parenchyma, is discontinuous. A gill-type interlamellar vasculature is lacking in the air sac circulation. Despite the elaborate development of the ventral aortae, there is little other anatomical evidence to suggest that gill and air sac outflow are separated and that dorsal aortic oxygen tensions are maintained when the gills are in a hypoxic environment. Physiological adjustments to hypoxic water conditions probably include temporal regulation of gill and air sac perfusion to be effective, if indeed they are so.  相似文献   

17.
In their natural habitat, brown-striped frog (Limnodynastes peronii) larvae periodically swim rapidly from the bottom of their ponds to the water surface and then immediately dive to the bottom again. This behaviour is presumably related to air-breathing. We examined the behavioural and metabolic responses to aquatic hypoxia in L. pernoii larvae. Gas filled lungs were found in all free-swimming larval stages of L. peronii, but air-breathing occurred infrequently in normoxic water. The frequency of air-breathing at 30°C increased rapidly in hypoxic water when oxygen partial pressure (Po2) fell below 10 kPa. Only a slight increase was observed at similar oxygen partial pressures at 20°C. The critical oxygen tension at 30°C was about 7kPa, below which, aquatic breathing larvae become metabolic oxygen conformers. In natural habitats where surfacing behaviour was observed, temperatures during summer months frequently exceed 25°C and some ponds become extremely hypoxic (po2 < 3.0 kPa); therefore air-breathing appears to be the only way in which these larvae can maintain a fully aerobic metabolism.  相似文献   

18.
Available studies that have examined O2 sensing in fish have indicated that oxygen-sensitive neuroepithelial cells (NECs) are O2 sensors in the gills and initiate cardiorespiratory reflexes in aquatic vertebrates. This is the first study describing the occurrence of NECs in accessory respiratory organs in the air-breathing catfish Clarias gariepinus. Immunocytochemical stainings with specific neuronal markers such as nNOS, VAchT, 5-HT and TH have been shown to be very useful for location and distribution of these cells in the gill fans and suprabranchial chamber that take origin from the transformation of the gill tissue. But the response of these putative O2 chemoreceptors, their role in the respiratory reflexes and their innervation await investigation.  相似文献   

19.
An electron microscopic study has been made of the three respiratory organs of climbing perch. The gill structure is similar to that of the other telcosts but the thickness of the water/blood barrier is much greater, being as great as 20 μm in some specimens. The increased thickness is due to a multilayered epithelium which is thinner (3.5–7 μm) over the marginal channel of the secondary lamellae. The other two main layers, basement membrane and pillar cell flange, are relatively thin (about 1 μm).
The pillar cells have a typical structure, but in certain regions they are contiguous with one another and line well-defined blood channels. Some of the columns of basement membrane material in such regions may be common to adjacent pillar cells.
The air-breathing organs are (a) the lining of the suprabranchial chambers , and (b) the labyrinthine plates attached to the dorsal region of branchial arches. Electron microscopy showed that their structure is well adapted for gas exchange, the air/blood barriers being only 0.12–0.3 μm, comprising an epithelial layer, basement membrane, and thin capillary endothelium. The many parallel blood channels of the respiratory islets of both organs are separated by pillar-like structures which differ from the pillar cells of the secondary lamellae. Thus the hypothesis that the air-breathing organs represent modified gills is not supported by this study.
The fine structure of the non-respiratory region of the air-breathing organs is similar to that of the skin, and includes chemoreceptor-like cells. Evidence concerning the possible homology of pillar cells with plain muscle cells is discussed.  相似文献   

20.
Methyl methacrylate vascular corrosion replicas were used to examine the macrocirculation in the head region and the microcirculation of respiratory vessels in the air-breathing swamp eel Monopterus cuchia. Fixed respiratory tissue was also examined by SEM to verify capillary orientation. The respiratory and systemic circulations are only partially separated, presumably resulting in supply of mixed oxygenated and venous blood to the tissues. A long ventral aorta gives rise directly to the coronary and hypobranchial arteries. Two large shunt vessels connect the ventral aorta to the dorsal aorta, whereas the remaining ventral aortic flow goes to the respiratory islets and gills. Only two pairs of vestigial gill arches remain, equivalent to the second and third arches, yet five pairs of aortic arches were identified. Most aortic arches supply the respiratory islets. Respiratory islet capillaries are tightly coiled spirals with only a fraction of their total length in contact with the respiratory epithelium. Valve-like endothelial cells delimit the capillary spirals and are unlike endothelial cells in other vertebrates. The gills are highly modified in that the lamellae are reduced to a single-channel capillary with a characteristic three-dimensional zig-zag pathway. There are no arterio-arterial lamellar shunts, although the afferent branchial artery supplying the gill arches also supplies respiratory islets distally. A modified interlamellar filamental vasculature is present in gill tissue but absent or greatly reduced in the respiratory islets. The macro- and micro-circulatory systems of M. cuchia have been considerably modified presumably to accommodate aerial respiration. Some of these modifications involve retention of primitive vessel types, whereas others, especially in the microcirculation, incorporate new architectural designs some of whose functions are not readily apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号