首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

2.
With more than 40 subunits, one FMN co-factor and eight FeS clusters, complex I or NADH:ubiquinone oxidoreductase is the largest multimeric respiratory enzyme in the mitochondria. In this review, we focus on the diversity of eukaryotic complex I. We describe the additional activities that have been reported to be associated with mitochondrial complex I and discuss their physiological significance. The recent identification of complex I-like enzymes in the hydrogenosome, a mitochondria-derived organelle is also discussed here. Complex I assembly in the mitochondrial inner membrane is an intricate process that requires the cooperation of the nuclear and mitochondrial genomes. The most prevalent forms of mitochondrial dysfunction in humans are deficiencies in complex I and remarkably, the molecular basis for 60% of complex I-linked defects is currently unknown. This suggests that mutations in yet-to-be-discovered assembly genes should exist. We review the different experimental systems for the study of complex I assembly. To our knowledge, in none of them, large screenings of complex I mutants have been performed. We propose that the unicellular green alga Chlamydomonas reinhardtii is a promising system for such a study. Complex I mutants can be easily scored on a phenotypical basis and a large number of transformants generated by insertional mutagenesis can be screened, which opens the possibility to find new genes involved in the assembly of the enzyme. Moreover, mitochondrial transformation, a recent technological advance, is now available, allowing the manipulation of all five complex I mitochondrial genes in this organism.  相似文献   

3.
电子传递链亦称呼吸链,由位于线粒体内膜的I、II、III、IV 4种复合物组成,负责电子传递和产生质子梯度。电子主要从复合物I进入电子传递链,经复合物III传递至复合物IV。电子传递系统的组装是一个十分复杂的过程,目前已知主要有约69个结构亚基以及至少16个组装因子参与了人类复合物I、III、IV的组装,这些蛋白质由核基因组与线粒体基因组共同编码。对线粒体电子传递系统的蛋白质组成及其结构已研究得较为清楚,但对它们的组装了解得还比较初步。许多人类线粒体疾病是由于电子传递系统的功能障碍引起的,其中又有许多是由于该系统中一个或多个部件的错误组装引起的。研究这些缺陷不仅能够加深对线粒体疾病发病机理的了解,也有助于揭示线粒体功能的调控机制。将着重对电子传递系统复合物的组装及其与人类疾病关系的研究进展进行综述。  相似文献   

4.
Complex I of the respiratory chain is composed of at least 45 subunits that assemble together at the mitochondrial inner membrane. Defects in human complex I result in energy generation disorders and are also implicated in Parkinson's disease and altered apoptotic signaling. The assembly of this complex is poorly understood and is complicated by its large size and its regulation by two genomes, with seven subunits encoded by mitochondrial DNA (mtDNA) and the remainder encoded by nuclear genes. Here we analyzed the assembly of a number of mtDNA- and nuclear-gene-encoded subunits into complex I. We found that mtDNA-encoded subunits first assemble into intermediate complexes and require significant chase times for their integration into the holoenzyme. In contrast, a set of newly imported nuclear-gene-encoded subunits integrate with preexisting complex I subunits to form intermediates and/or the fully assembly holoenzyme. One of the intermediate complexes represents a subassembly associated with the chaperone B17.2L. By using isolated patient mitochondria, we show that this subassembly is a productive intermediate in complex I assembly since import of the missing subunit restores complex I assembly. Our studies point to a mechanism of complex I biogenesis involving two complementary processes, (i) synthesis of mtDNA-encoded subunits to seed de novo assembly and (ii) exchange of preexisting subunits with newly imported ones to maintain complex I homeostasis. Subunit exchange may also act as an efficient mechanism to prevent the accumulation of oxidatively damaged subunits that would otherwise be detrimental to mitochondrial oxidative phosphorylation and have the potential to cause disease.  相似文献   

5.
Recently, mitochondria have been suggested to act in tumor suppression. However, the underlying mechanisms by which mitochondria suppress tumorigenesis are far from being clear. In this study, we have investigated the link between mitochondrial dysfunction and the tumor suppressor protein p53 using a set of respiration-deficient (Res(-)) mammalian cell mutants with impaired assembly of the oxidative phosphorylation machinery. Our data suggest that normal mitochondrial function is required for γ-irradiation (γIR)-induced cell death, which is mainly a p53-dependent process. The Res(-) cells are protected against γIR-induced cell death due to impaired p53 expression/function. We find that the loss of complex I biogenesis in the absence of the MWFE subunit reduces the steady-state level of the p53 protein, although there is no effect on the p53 protein level in the absence of the ESSS subunit that is also essential for complex I assembly. The p53 protein level was also reduced to undetectable levels in Res(-) cells with severely impaired mitochondrial protein synthesis. This suggests that p53 protein expression is differentially regulated depending upon the type of electron transport chain/respiratory chain deficiency. Moreover, irrespective of the differences in the p53 protein expression profile, γIR-induced p53 activity is compromised in all Res(-) cells. Using two different conditional systems for complex I assembly, we also show that the effect of mitochondrial dysfunction on p53 expression/function is a reversible phenomenon. We believe that these findings will have major implications in the understanding of cancer development and therapy.  相似文献   

6.
In humans, complex I of the respiratory chain is composed of seven mitochondrial DNA (mtDNA)-encoded and 38 nuclear-encoded subunits that assemble together in a process that is poorly defined. To date, only two complex I assembly factors have been identified and how each functions is not clear. Here, we show that the human complex I assembly factor CIA30 (complex I intermediate associated protein) associates with newly translated mtDNA-encoded complex I subunits at early stages in their assembly before dissociating at a later stage. Using antibodies we identified a CIA30-deficient patient who presented with cardioencephalomyopathy and reduced levels and activity of complex I. Genetic analysis revealed the patient had mutations in both alleles of the NDUFAF1 gene that encodes CIA30. Complex I assembly in patient cells was defective at early stages with subunits being degraded. Complementing the deficiency in patient fibroblasts with normal CIA30 using a novel lentiviral system restored steady-state complex I levels. Our results indicate that CIA30 is a crucial component in the early assembly of complex I and mutations in its gene can cause mitochondrial disease.  相似文献   

7.
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.  相似文献   

8.
Mitochondrial respiratory chain dysfunction is responsible for a large variety of early and late-onset diseases. NADH-ubiquinone oxidoreductase (complex I) defects constitute the most commonly observed mitochondrial disorders. We have generated Caenorhabditis elegans strains with mutations in the 51 kDa active site subunit of complex I. These strains exhibit decreased NADH-dependent respiration and lactic acidosis, hallmark features of complex I deficiency. Surprisingly, the mutants display a significant decrease in the amount and activity of cytochrome c oxidase (complex IV). The metabolic and reproductive fitness of the mutants is markedly improved by riboflavin. In this study, we have examined how the assembly and activity of complexes I and IV are affected by riboflavin. Our results reveal that the mutations result in variable steady-state levels of different complex I subunits and in a significant reduction in the amount of COXI subunit. Using native gel electrophoresis, we detected assembly intermediates for both complexes I and IV. Riboflavin promotes the assembly of both complexes, resulting in increased catalytic activities. We propose that one primary pathogenic mechanism of some complex I mutations is to destabilize complex IV. Enhancing complex I assembly with riboflavin results in the added benefit of partially reversing the complex IV deficit.  相似文献   

9.
Leslie I. Grad 《BBA》2006,1757(2):115-122
Mitochondrial respiratory chain dysfunction is responsible for a large variety of early and late-onset diseases. NADH-ubiquinone oxidoreductase (complex I) defects constitute the most commonly observed mitochondrial disorders. We have generated Caenorhabditis elegans strains with mutations in the 51 kDa active site subunit of complex I. These strains exhibit decreased NADH-dependent respiration and lactic acidosis, hallmark features of complex I deficiency. Surprisingly, the mutants display a significant decrease in the amount and activity of cytochrome c oxidase (complex IV). The metabolic and reproductive fitness of the mutants is markedly improved by riboflavin. In this study, we have examined how the assembly and activity of complexes I and IV are affected by riboflavin. Our results reveal that the mutations result in variable steady-state levels of different complex I subunits and in a significant reduction in the amount of COXI subunit. Using native gel electrophoresis, we detected assembly intermediates for both complexes I and IV. Riboflavin promotes the assembly of both complexes, resulting in increased catalytic activities. We propose that one primary pathogenic mechanism of some complex I mutations is to destabilize complex IV. Enhancing complex I assembly with riboflavin results in the added benefit of partially reversing the complex IV deficit.  相似文献   

10.
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.  相似文献   

11.
Complex I dysfunction is a common, heterogeneous cause of human mitochondrial disease having poorly understood pathogenesis. The extensive conservation of complex I composition between humans and Caenorhabditis elegans permits analysis of individual subunit contribution to mitochondrial functions at both the whole animal and mitochondrial levels. We provide the first experimentally-verified compilation of complex I composition in C. elegans, demonstrating 84% conservation with human complex I. Individual subunit contribution to mitochondrial respiratory capacity, holocomplex I assembly, and animal anesthetic behavior was studied in C. elegans by RNA interference-generated knockdown of nuclear genes encoding 28 complex I structural subunits and 2 assembly factors. Not all complex I subunits directly impact respiratory capacity. Subcomplex Iλ subunits along the electron transfer pathway specifically control whole animal anesthetic sensitivity and complex II upregulation, proportionate to their relative impairment of complex I-dependent oxidative capacity. Translational analysis of complex I dysfunction facilitates mechanistic understanding of individual gene contribution to mitochondrial disease. We demonstrate that functional consequences of complex I deficiency vary with the particular subunit that is defective.  相似文献   

12.
Heo JY  Park JH  Kim SJ  Seo KS  Han JS  Lee SH  Kim JM  Park JI  Park SK  Lim K  Hwang BD  Shong M  Kweon GR 《PloS one》2012,7(3):e32629
DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O(2) consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease.  相似文献   

13.
In humans, complex I dysfunction has been observed in a high percentage of patients with mitochondrial myopathy. Analysis of mitochondria from these patients suggests the function and assembly of complex I is particularly susceptible to abnormalities of mitochondrial DNA, involving either point mutations of tRNA genes or major deletions. The evidence for a complex I defect in Parkinson's disease is accumulating, although the cause of this deficiency or the role it plays in the events that culminate in dopaminergic cell death remains unresolved.  相似文献   

14.
Mitochondrial complex I deficiency is the most prevalent and least understood disorder of the oxidative phosphorylation system. The genetic cause of many cases of isolated complex I deficiency is unknown because of insufficient understanding of the complex I assembly process and the factors involved. We performed homozygosity mapping and gene sequencing to identify the genetic defect in five complex I-deficient patients from three different families. All patients harbored mutations in the NDUFAF3 (C3ORF60) gene, of which the pathogenic nature was assessed by NDUFAF3-GFP baculovirus complementation in fibroblasts. We found that NDUFAF3 is a genuine mitochondrial complex I assembly protein that interacts with complex I subunits. Furthermore, we show that NDUFAF3 tightly interacts with NDUFAF4 (C6ORF66), a protein previously implicated in complex I deficiency. Additional gene conservation analysis links NDUFAF3 to bacterial-membrane-insertion gene cluster SecF/SecD/YajC and to C8ORF38, also implicated in complex I deficiency. These data not only show that NDUFAF3 mutations cause complex I deficiency but also relate different complex I disease genes by the close cooperation of their encoded proteins during the assembly process.  相似文献   

15.
Mitochondrial dysfunction is thought to contribute to Parkinson's disease progression, and factors that can overcome mitochondrial defects could potentially be used to combat the disease and prevent neuronal death. In this issue, Inoue et al 1 report that reduction of p13, a mitochondrial protein that inhibits complex I assembly, rescues the cellular and behavioral defects of Parkinson's disease models. This work suggests that stabilizing the mitochondrial electron transport chain may be beneficial in the context of Parkinson's disease.  相似文献   

16.
Deficiencies in the activity of complex I (NADH: ubiquinone oxidoreductase) are an important cause of human mitochondrial disease. Complex I is composed of at least 46 structural subunits that are encoded in both nuclear and mitochondrial DNA. Enzyme deficiency can result from either impaired catalytic efficiency or an inability to assemble the holoenzyme complex; however, the assembly process remains poorly understood. We have used two-dimensional Blue-Native/SDS gel electrophoresis and a panel of 11 antibodies directed against structural subunits of the enzyme to investigate complex I assembly in the muscle mitochondria from four patients with complex I deficiency caused by either mitochondrial or nuclear gene defects. Immunoblot analyses of second dimension denaturing gels identified seven distinct complex I subcomplexes in the patients studied, five of which could also be detected in nondenaturing gels in the first dimension. Although the abundance of these intermediates varied among the different patients, a common constellation of subcomplexes was observed in all cases. A similar profile of subcomplexes was present in a human/mouse hybrid fibroblast cell line with a severe complex I deficiency due to an almost complete lack of assembly of the holoenzyme complex. The finding that diverse causes of complex I deficiency produce a similar pattern of complex I subcomplexes suggests that these are intermediates in the assembly of the holoenzyme complex. We propose a possible assembly pathway for the complex, which differs significantly from that proposed for Neurospora, the current model for complex I assembly.  相似文献   

17.
Complex I (NADH:ubiquinone oxidoreductase) is the largest multiprotein enzyme of the oxidative phosphorylation system. Its assembly in human cells is poorly understood and no proteins assisting this process have yet been described. A good candidate is NDUFAF1, the human homologue of Neurospora crassa complex I chaperone CIA30. Here, we demonstrate that NDUFAF1 is a mitochondrial protein that is involved in the complex I assembly process. Modulating the intramitochondrial amount of NDUFAF1 by knocking down its expression using RNA interference leads to a reduced amount and activity of complex I. NDUFAF1 is associated to two complexes of 600 and 700 kDa in size of which the relative distribution is altered in two complex I deficient patients. Analysis of NDUFAF1 expression in a conditional complex I assembly system shows that the 700 kDa complex may represent a key step in the complex I assembly process. Based on these data, we propose that NDUFAF1 is an important protein for the assembly/stability of complex I.  相似文献   

18.
The biogenesis of mitochondrial NADH:ubiquinone oxidoreductase (complex I) requires several assembly chaperones. These so-called complex I assembly factors have emerged as a new class of human disease genes. Here, we identified putative assembly factor homologues in Caenorhabditis elegans. We demonstrate that two candidates (C50B8.3/NUAF-1, homologue of NDUFAF1 and R07H5.3/NUAF-3, homologue of NDUFAF3) clearly affect complex I function. Assembly factor deficient worms were shorter, showed a diminished brood size and displayed reduced fat content. Our results suggest that mitochondrial complex I biogenesis is evolutionarily conserved. Moreover, Caenorhabditis elegans appears to be a promising model organism to study assembly factor related human diseases.  相似文献   

19.
The mitochondrial respiratory chain consists of multi-subunit protein complexes embedded in the inner membrane. Although the majority of subunits are encoded by nuclear genes and are imported into mitochondria, 13 subunits in humans are encoded by mitochondrial DNA. The coordinated assembly of subunits encoded from two genomes is a poorly understood process, with assembly pathway defects being a major determinant in mitochondrial disease. In this study, we monitored the assembly of human respiratory complexes using radiolabeled, mitochondrially encoded subunits in conjunction with Blue Native polyacrylamide gel electrophoresis. The efficiency of assembly was found to differ markedly between complexes, and intermediate complexes containing newly synthesized mitochondrial DNA-encoded subunits could be observed for complexes I, III, and IV. In particular, we detected human cytochrome b as a monomer and as a component of a novel approximately 120 kDa intermediate complex at early chase times before being totally assembled into mature complex III. Furthermore, we show that this approach is highly suited for the rapid detection of respiratory complex assembly defects in fibroblasts from patients with mitochondrial disease and, thus, has potential diagnostic applications.  相似文献   

20.
Defects in Complex I assembly is one of the emerging underlying causes of severe mitochondrial disorders. The assembly of Complex I has been difficult to understand due to its large size, dual genetic control and the number of proteins involved. Mutations in Complex I subunits as well as assembly factors have been reported to hinder its assembly and give rise to a range of mitochondria disorders. In this review, we summarize the recent progress made in understanding the Complex I assembly pathway. In particularly, we focus on the known as well as novel assembly factors and their role in assembly of Complex I and human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号